Skip to main content

Advertisement

Log in

Roles of catalase (CAT) and ascorbate peroxidase (APX) genes in stress response of eggplant (Solanum melongena L.) against Cu+2 and Zn+2 heavy metal stresses

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Eggplant (Solanum melongena L.) is a good source of minerals and vitamins and this feature makes its value comparable with tomato which is economically the most important vegetable worldwide. Due to its common usage as food and in medicines, eggplant cultivation has a growing reputation worldwide. But genetic yield potential of an eggplant variety is not always attained, and it is limited by some factors such as heavy metal contaminated soils in today’s world. Today, one of the main objectives of plant stress biology and agricultural biotechnology areas is to find the genes involved in antioxidant stress response and engineering the key genes to improve the plant resistance mechanisms. In this regard, the current study was conducted to gain an idea on the roles of catalase (CAT) and ascorbate peroxidase (APX) genes in defense mechanism of eggplant (S. melongena L., Pala-49 (Turkish cultivar)) treated with different concentrations of Cu+2 and Zn+2. For this aim, the steady-state messenger RNA (mRNA) levels of CAT and APX genes were determined by quantitative real-time PCR (qRT-PCR) in stressed eggplants. The results of the current study showed that different concentrations of Cu+2 and Zn+2 stresses altered the mRNA levels of CAT and APX genes in eggplants compared to the untreated control samples. When the mRNA levels of both genes were compared, it was observed that CAT gene was more active than APX gene in eggplant samples subjected to Cu+2 contamination. The current study highlights the importance of CAT and APX genes in response to Cu+2 and Zn+2 heavy metal stresses in eggplant and gives an important knowledge about this complex interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aydın, S., Büyük İ., & Aras, S. (2013). Relationship among lipid peroxidation, SOD enzyme activity, and SOD gene expresson profile in Lycoperscum esculentum L. exposed to cold stress. Genetic and Molecular Research, 12(3), 3220–3229.

  • Bhattacharjee, S. (2005). Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Current Science India, 89, 1113–1121.

    CAS  Google Scholar 

  • Clark, D. R., Flynn, K. F., & Fabian, H. (2014). Variation in elemental stoichiometry of the marine diatom Thalassiosira weissflogii (Bacillariophyceae) in response to combined nutrient stress and changes in carbonate chemistry. Journal of Plant Physiology, 50, 640–6511.

    CAS  Google Scholar 

  • Dai, X., Xu, Y., Ma, Q., Xu, W., Wang, T., & Xue, Y. (2007). Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiology, 143, 1739–1751.

    Article  CAS  Google Scholar 

  • Doganlar, S., Frary, A., Daunay, M. C., Lester, R. N., & Tanksley, S. D. (2002). A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics, 161, 1697–1711.

    CAS  Google Scholar 

  • Fortunato, A., Lidon, F. C., Batista-Santos, P., Leitão, A. E., Pais, I. P., Ribeiro, A. I., et al. (2010). Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance. Journal of Plant Physiology, 167, 333–342.

    Article  CAS  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Journal of Plant Biochemistry & Physiology, 48, 909–930.

    Article  CAS  Google Scholar 

  • Goupil, P., Souguir, D., Ferjani, E., Faure, O., Hitmi, A., & Ledoigt, G. (2009). Expression of stress-related genes in tomato plants exposed to arsenic and chromium in nutrient solution. Journal of Plant Physiology, 166, 1446–1452.

    Article  CAS  Google Scholar 

  • Ibrahim, M. M., & Bafeel, O. S. (2009). Alteration of gene expression, superoxide anion radical and lipid peroxidation induced by lead toxicity in leaves of Lepidium sativum. Journal of Animal & Plant Sciences, 4(1), 281–288.

    Google Scholar 

  • Kalefetoğlu, T., & Ekmekçi, Y. (2005). The effect of drought on plants and tolerance mechanisms. Gazi University Journal of Science, 18(4), 723–740.

    Google Scholar 

  • Kalloo, G. (1993). Genetic improvement of vegetable crops. In G. Kallo & B. O. Bergh (Eds.), Tomato (pp. 645–666). New York: Pergamon Press.

    Google Scholar 

  • Kashyap, V., Kumar, S. V., Collonnier, C., Fusari, F., Haicour, R., Rotino, G. L., Sihachakr, D., & Rajam, M. V. (2003). Biotechnology of eggplant. Scientia Horticulturae, 97, 1–25.

    Article  CAS  Google Scholar 

  • Khan, R. (1979). Solanum melongena and its ancestral forms. In J. G. Hawkes, R. N. Lester, & A. D. Skelding (Eds.), The biology and taxonomy of the Solanaceae (pp. 629–636). London: Academic.

    Google Scholar 

  • Koornneef, M., & Peeters, A. J. M. (1999). Genetic approaches to abiotic stress responses. In K. Shinozaki & K. Yamaguchi-Shinozaki (Eds.), Molecular responses to cold, drought, heat and salt stress in higher plants (pp. 1–10). Texas: Landes Company.

    Google Scholar 

  • Lee, Y. P., Kim, S. H., Bang, J. W., Lee, H. S., Kwak, S. S., & Kwon, S. Y. (2007). Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Reports, 26, 591–598.

    Article  CAS  Google Scholar 

  • Lin, R., Wang, X., Luo, Y., Du, W., Guo, H., & Yin, D. (2007). Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere, 69, 89–98.

    Article  CAS  Google Scholar 

  • Livak, K. J., Scmittgen, T. D., & Scmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔC(T)) Method. Methods, 25, 402–408.

  • Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). The reactive oxygen gene network in plants. Trends in Plant Science, 9, 490–498.

    Article  CAS  Google Scholar 

  • Munns, R. (2011). Plant adaptations to salt and water stress: differences and commonalities. Advances in Botanical Research, 57, 1–32.

    Article  CAS  Google Scholar 

  • Pareek, A., Sopory, S. K., Bohnert, H. J., & Govindjee (Eds.). (2010). Abiotic stress adaptation in plants. Physiological, molecular and genomic foundation. Dordrecht: Springer. pp. 978-90-481-3111.

    Google Scholar 

  • Payton, P., Webb, R. P., Kornyeyev, D., Allen, R. D., & Holaday, A. S. (2001). Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. Journal of Experimental Botany, 52, 2345–2354.

    Article  CAS  Google Scholar 

  • Pekker, I., Tel-Or, E., & Mittler, R. (2002). Reactive oxygen intermediates and glutathione regulate the expression of cytosolic ascorbate peroxidase during iron-mediated oxidative stress in bean. Plant Molecular Biology, 49, 429–438.

    Article  CAS  Google Scholar 

  • Romero-Puertas, M. C., Corpas, F. J., Rodriguez-Serrano, M., Gomez, M., del Río, L. A., & Sandalio, L. M. (2007). Differential expression and regulation of antioxidative enzymes by Cd in pea plants. Journal of Plant Physiology, 164, 1346–1357.

    Article  CAS  Google Scholar 

  • Rosa, S. B., Caverzan, A., Teixeira, F. K., Lazzarotto, F., Silveira, J. A., Ferreira-Silva, S. L., Abreu-Neto, J., Margis, R., & Margis-Pinheiro, M. (2010). Cytosolic APX knockdown indicates an ambiguous redox response in rice. Phytochemistry, 71, 548–558.

    Article  CAS  Google Scholar 

  • Roxas, V. P., Lodhi, S. A., Garrett, D. K., Mahan, J. R., & Allen, R. D. (2000). Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase glutathione peroxidase. Plant & Cell Physiology, 41, 1229–1234.

    Article  CAS  Google Scholar 

  • Shao, H. B., Chu, L. Y., & Shao, M. A. (2008). Calcium as a versatile plant signal transducer under soil water stress. BioEssays, 30, 634–641.

    Article  CAS  Google Scholar 

  • Shinozaki, K., & Yamaguchi-Shinozaki, K. (2000). Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology, 3, 217–223.

    Article  CAS  Google Scholar 

  • Sihachakr, D., Daunay, M. C., Serraf, L., et al. (1994). Somatic hybridisation of eggplant (Solanum melongena L.) with its close and wilt relatives. In Y. P. S. Bajaj (Ed.), Biotechnology in agriculture and forestry, somatic hybridisation in crop improvement. Berlin: Springer.

    Google Scholar 

  • Soydam-Aydın, S., Büyük, İ., & Aras, S. (2013a). Expression of SOD gene and evaluating its role in stress tolerance in NaCl and PEG stressed Lycopersicum esculentum. Turkish Journal of Botany, 38, 89–98.

    Google Scholar 

  • Soydam-Aydın, S., Büyük, İ., Çelikkol, P., & Aras, S. (2013b). A role of catalase (CAT) in detoxification of reactive oxygen species (ROS) in tomato (Lycopersicum esculentum) contaminated with manganese (Mn2+). Biological Diversity and Conservation, 6(3), 140–145.

  • Viehweger, K. (2014). How plants cope with heavy metals. Botanical Studies, 55, 35.

    Article  Google Scholar 

  • Zhu, J. K. (2001). Plant salt tolerance. Trends Plant Sci, 6, 66–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge financial assistance of the BAP project (Project No: FEB 2012/11) funded by Niğde University for carrying out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semra Soydam-Aydın.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soydam-Aydın, S., Büyük, İ., Cansaran-Duman, D. et al. Roles of catalase (CAT) and ascorbate peroxidase (APX) genes in stress response of eggplant (Solanum melongena L.) against Cu+2 and Zn+2 heavy metal stresses. Environ Monit Assess 187, 726 (2015). https://doi.org/10.1007/s10661-015-4939-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4939-y

Keywords

Navigation