Skip to main content

Advertisement

Log in

Isotopic and geochemical characterization of invader tilapia fishes from water bodies of West Bengal and Karnataka, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The otoliths (N = 12) of freshwater invasive species tilapia (Tilapia mossambicus) collected from two water bodies located at Kolkata and Bangalore, India, were analyzed for stable isotopes (δ18O, δ14C) and major and trace elements in order to assess the suitability of using otoliths as a tracer of aquatic environmental changes. The stable isotope analysis was done using the dual inlet system of a Finnigan-MAT 253 isotope ratio mass spectrometer (Thermo-Fisher, Bremen, Germany). Concentrations of major and trace elements were determined using a Thermo X-Series II quadrupole mass spectrometer. The stable isotope composition in tilapia otolith samples from Bangalore and Kolkata water bodies are quite good agreeing with that of the respective lake/pond and rain water. Elemental composition revealed in a pattern of Ca > Fe > Na > Sr > K > Ba > Cr > Mg > As > Mn > Zn > Co > Cu > Cd > Pb. The otoliths from Kolkata pond water are more enriched in Ba, Zn, Pb, Mn, Se, Cu, Zn, Cd, and Ni whereas Cr and As were found to be higher in otolith samples from Bangalore lake. The enrichment factor (EF) values of Cr were higher for both the sampling location in comparison with other metals, although all the studied metals exhibited EF values >1. The PCA shows clustering of metals in the otolith which are related either with the metabolic and physiological attributes or waterborne source. The study demonstrated the potential of stable isotope techniques to distinguish otolith specimens from varied climatic zone, while elemental composition recorded the quality of water at both the locations. The role of climate driving the quality of water can be understood by detailed and continuous monitoring of otolith specimens in the future. Future method allows reconstruction of climate and water quality from old specimens from field exposures or museum collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adeogun, A. O., & Chukwuka, A. V. (2010). Differential sensitivity of saggital otolith growth and somatic growth in Oreochromis niloticus exposed to textile industry effluent. Life Science Journal, 7(2), 35–41.

    Google Scholar 

  • Aliabad, H. S., Mohammadi, M., Mashaii, M., Rajabipour, F., Bitaraf, A., & Hesni, M. A. (2012). Adaptation, Growth and Survival of Tilapia (Oreochromis niloticus) in Bafgh Brackish Water. Iranian Journal of Fisheries Sciences (in Persian) 01/2012;, 21(2), 23–30.

    Google Scholar 

  • Alloway, B. J., & Ayres, D. C. (1998). Chemical principles of environmental pollution. Water, Air, & Soil Pollution, 102(1), 216–218.

    Article  CAS  Google Scholar 

  • Almeida, E., Diamantino, T. C., & de Sousa, O. (2007). Marine paints: the particular case of antifouling paints. Progress in Organic Coating, 59, 2–20.

    Article  CAS  Google Scholar 

  • Athauda, S. (2010). Is tilapia becoming an invasive fish in Sri Lanka. In B. Marambe, P. Silva, S. Wijesundara, & N. Atapattu (Eds.), Invasive alien species—strengthening capacity to control introduction and spread in Sri Lanka (pp. Pp 127–Pp 130). Sri Lanka: Biodiversity Secretariat of the Ministry of Environment.

    Google Scholar 

  • Banerjee, A. D. K. (2003). Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 23, 95–105.

    Article  Google Scholar 

  • Barbee, N. C., Greig, A., & Swearer, S. E. (2013). Validating the use of embryonic fish otoliths as recorders of sublethal exposure to copper in estuarine sediments. Environmental Pollution, 178, 441–446.

    Article  CAS  Google Scholar 

  • Bath, G. E., Thorrold, S. R., Jones, C. M., Campana, S. E., McLaren, J. W., & Lam, J. W. H. (2000). Strontium and barium uptake in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta, 64, 1705–1714.

    Article  CAS  Google Scholar 

  • Begum, A., Harikrishna, S., Khan, I., Ramaiah, M., Veena, K., & Vinuta, K. (2008). Nutrients and heavy metal profile of Madivala Lake, Bangalore South, Karnataka. Rasayan Journal of Chemistry, 1(3), 572–582.

    CAS  Google Scholar 

  • Biju Kumar, A. (2000). Exotic Fishes and Fresh water Fish Diversity. Zoos’ Print Journal, 15(11), 363–367.

    Article  Google Scholar 

  • Brophy, D., Jeffries, T. E., & Danilowicz, B. S. (2004). Elevated manganese concentrations at the cores of clupeid otoliths: possible environmental, physiological, or structural origins. Marine Biology (Berlin), 144(4), 779–786. doi:10.1007/s00227-003-1240-3.

    Article  CAS  Google Scholar 

  • Campana, S. E. (1999). Chemistry and composition of Fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series, 188, 263–297.

    Article  CAS  Google Scholar 

  • Campana, S. E., Fowler, A. J., & Jones, C. M. (1994). Otolith elemental fingerprinting for stock identification of Atlantic cod (Gadus morhua) using laser ablation ICPMS. Canadian Journal of Fisheries and Aquatic Sciences, 51, 1942–1950.

    Article  Google Scholar 

  • Campana, S. E., & Neilson, J. D. (1985). Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 42, 1014–1032.

    Article  Google Scholar 

  • CCME (2006). Canadian sediment quality guidelines for the protection of aquatic life: Summary tables. Updated 2006. Canadian environmental quality guidelines. Toronto: Canadian Council of Ministry and Environment.

    Google Scholar 

  • Chakraborti, D., Rahman, M. M., Murril, M., Das, R., Siddaya Patil, S. G., Sarkar, A., Dadapeer, H. J., Yendigeri, S., Ahmed, R., & Das, K. K. (2013). Environmental arsenic contamination and its health effects in a historic gold mining area of the Mangalur greenstone belt of Northeastern Karnataka, India. Journal of Hazardous Materials, 15(262), 1048–1055.

    Article  Google Scholar 

  • Chakraborty, N., Banerjee, A., & Pal, R. (2011). Biomonitoring of lead, cadmium and chromium in environmental water from Kolkata, North and South 24-Parganas using algae as bioreagent. Journal of Algal Biomass Utilization, 2(3), 27–41.

    Google Scholar 

  • Chapman, H., Bickle, M., Thaw, S. A., & Thiam, H. N. (2015). Chemical fluxes from time series sampling of the Irrawaddy and Salween Rivers, Myanmar. Chemical Geology, 401, 15–27.

    Article  CAS  Google Scholar 

  • Choudhury, H., & Cary, R. (2001) “Concise International Chemical Assessment Document 33: Barium and Barium Compounds,” Geneva: WHO; 2001.

  • Chino, N., & Arai, T. (2009). Relative contribution of migratory type on the reproduction of migrating silver eels, Anguilla japonica, collected off Shikoku Island, Japan. Marine Biology, 156, 661–668.

    Article  CAS  Google Scholar 

  • Chowdhury, M. J., & Blust, R. (2002). Bioavailability of water borne strontium to the common carp, Cyprinus carpio, in complexing environments. Aquatic Toxicology, 58(3–4), 215–227.

    Article  CAS  Google Scholar 

  • Coplen, T. B., Brand, W. A., Gehre, M., Gröning, M., Meijer, H. A. J., Toman, B., & Verkouteren, R. M. (2006). New guidelines for δ13C measurements. Analytical Chemistry, 78(7), 2439–2244.

    Article  CAS  Google Scholar 

  • CPCB (Central Pollution Control Board), (2010). Status of the vehicular pollution control programme in India, http://www.cpcb.nic.in/upload/NewItems/NewItem_156_VPC_REPORT.pdf, accessed in March 2014.

  • Darrie, G. (2001). Commercial extraction technology and process waste disposal in the manufacture of chromium chemicals from ore. Environmental Geochemistry and Health, 23(3), 187–193.

    Article  CAS  Google Scholar 

  • Daverat, F., Limburg, K. E., Thibault, I., Shiao, J. C., Dodson, J. J., Caron, F., Tzeng, W. N., Iizuka, Y., & Wickström, H. (2006). Phenotypic plasticity of habitat use by three temperate eel species Anguilla anguilla, A. japonica, and A. rostrata. Marine Ecology Progress Series, 308, 231–241.

    Article  Google Scholar 

  • DeNiro, M. J., & Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta, 42, 495–506.

    Article  CAS  Google Scholar 

  • Devereux, I. (1967). Temperature measurements from oxygen isotope ratios of fish otoliths. Science, 155, 1684–1685.

    Article  CAS  Google Scholar 

  • Farrell, J., & Campana, S. E. (1996). Regulation of calcium and strontium deposition on the otoliths of juvenile Tilapia, Oreochromis nilotica. Comparative Biochemistry and Physiology Part A: Physiology, 115(2), 103–109.

    Article  Google Scholar 

  • Fattah, I.M.S.A.E., Ahmed, M.H., & Aal, M.A. (2008). Zooplankton as live food for fry and fingerlings of Nile tilapia (Oreochromis nilotica) and catfish (Clarias gariepinus) in concrete ponds. 8 th International Symposium on Tilapia in Aquaculture, 757–771.

  • Franco, R. W. D. A., Sampaio, J. A., Medina, A., & Beneditto, P. M. D. (2013). A new approach to marine fish otoliths study: electron paramagnetic study. Journal of the Marine Biological Association of the United Kingdom, 1-8.

  • Ganie, M. A., Bhat, M. D., Khan, M. I., Parveen, M., Balkhi, M. H., & Malla, M. A. (2013). Invasion of the Mozambique tilapia, Oreochromis mossambicus (Pisces: Cichlidae, peters, 1852) in Yamuna River, Uttar Pradesh, India. Journal of Ecology and Natural Environment, 5(10), 310–317.

    Article  Google Scholar 

  • Gao, Y. W. (2002). Regime shift signatures from stable oxygen isotopic records of otoliths of Atlantic cod (Gadus morhua). Isotopes in Environmental and Health Studies, 38, 251–263.

    CAS  Google Scholar 

  • Gao, Y. W., Joner, S. H., & Bargmann, G. G. (2001). Stable isotopic composition of otoliths in identification of spawning stocks of Pacific herring (Clupea pallasi) in Puget Sound. Canadian Journal of Fisheries and Aquatic Sciences, 58, 2113–2120.

    Article  Google Scholar 

  • Geffen, A. J., Pearce, N. J., & Perkins, W. T. (1998). Metal concentrations in fish otoliths in relation to body composition after laboratory exposure to mercury and lead. Marine Ecology Progress Series, 165, 235–245.

    Article  CAS  Google Scholar 

  • Hanson, P. J., & Zdanowicz, V. S. (1999). Elemental composition of otoliths from Atlantic croaker along an estuarine pollution gradient. Journal of Fish Biology, 54, 656–668.

    Article  Google Scholar 

  • Huss, H. H. (1995). Post Mortem changes in fish. In: Quality and quality changes in fresh fish. FAO Fisheries Technical paper 348, Food and Agriculture Organization of United Nation. Chapter 5.

  • Jessop, B. M., Cairns, D. K., Thibault, I., & Tzeng, W. N. (2008). Life history of American eel Anguilla rostrata: new insights from otolith microchemistry. Aquatic Biology, 1, 205–216.

    Article  Google Scholar 

  • Jumbe, A. S., & Nandini, N. (2009). Impact assessment of heavy metal pollution in Verthur Lake, Bangalore. Journal of Applied and Natural Science, 1(1), 53–61.

    Google Scholar 

  • Kalish, J. M. (1990). Use of otolith microchemistry to distinguish the progeny of sympatric anadromous and non-anadromous salmonids. Fisheries Bulletin, 88, 657–666.

    Google Scholar 

  • Kalish, J. M. (1991). Oxygen and carbon stable isotopes in the otoliths of wild and laboratory- reared Australian salmon (Arripis trutta). Marine Biology, 110, 37–47.

    Article  Google Scholar 

  • Kiran, R., & Ramachandra, T.V, (1999). Status of wetlands in Bangalore and its conservation aspects. ENVIS Journal of Human Settlements, 16-24

  • Kitagawa, T., Ishimura, T., Uozato, R., Shirai, K., Amano, Y., Shinoda, A., Otake, T., Tsunogai, U., & Kimura, S. (2013). Otolith δ18O of Pacific bluefin tuna Thunnus orientalis as an indicator of ambient water temperature. Marine Ecology Progress Series, 481, 199–209.

    Article  CAS  Google Scholar 

  • Krobthong, J., Rachakornkij, M., & Sricharoenchaikul, V. (2012). Distributions of Cr, Ni, Cu and Zn in hazardous waste co-processing in a pilot-scale rotary cement kiln. Journal of Applied Sciences, 12(1), 22–31. doi:10.3923/jas.2012.22.31.

    Article  CAS  Google Scholar 

  • Kulshrestha, A., Satsangi, P. G., Masih, J., & Taneja, A. (2009). Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Science of the Total Environment, 407, 6196–6204.

    Article  CAS  Google Scholar 

  • Kumar, B., Kumar, K. S., Priya, M., Mukhopadhyay, D., & Shah, R. (2010). Distribution, partitioning, bioaccumulation of trace elements in water, sediment and fish from sewage fed fish ponds in eastern Kolkata, India. Toxicological and Environmental Chemistry, 92(2), 243–260.

    Article  CAS  Google Scholar 

  • Kumar, B., Shah, R., & Mukherjee, D. (2011). Geochemical distribution of heavy metals in sediments from sewage fed fish ponds from Kolkata wetlands, India. Chemical Speciation and Bioavailability, 23(1), 24–32.

  • Lokeshwari, H., & Chandrappa, G. T. (2006). Heavy metals content in water, water hyacinth and sediments of Lalbagh tank, Bangalore (India). Journal of Environmental Science & Engineering, 48(3), 183–188.

    CAS  Google Scholar 

  • Maiti, P., & Banerjee, S. (2012). Fate of metals in fish under variable sewage input in fish ponds. International Journal of Scientific Research Publication, 2 (6), ISSN 2250-3153.

  • Milton, D. A., & Chenery, S. R. (2001). Sources and uptake of trace metals in otoliths of juvenile barramundi (Lates calcarifer). Journal of Experimental Marine Biology and Ecology, 264, 47–65.

    Article  CAS  Google Scholar 

  • Oxman, D. S., Barnett-Johnson, R., Smith, M. E., Coffin, A., Miller, D. L., Josephson, R., & Popper, A. N. (2007). The effect of vaterite deposition on sound reception, otolith morphology, and inner ear sensory epithelia in hatchery-reared Chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences, 64, 1469–1478.

    Article  Google Scholar 

  • Pandey, J., & Singh, A. (2012). Chemical characterization of rainwater in a seasonally dry tropical region (Varanasi), India. Journal of Environmental Biology, 33, 629–634.

    CAS  Google Scholar 

  • Pattanaik, J. K., BalaKrishnan, S., Bhutani, R., & Singh, P. (2007). Chemical and strontium isotopic composition of Kaveri, Palar and Ponnaiyar rivers: Significance to weathering of granulites and granitic gneisses of southern peninsular India. Current Science, 93(4), 523–531.

    CAS  Google Scholar 

  • Radtke, R. L., Williams, D. F., & Hurley, P. C. F. (1987). The stable isotopic composition of bluefin tuna (Thunnus thynnus) otoliths: evidence for physiological regulation. Comparative Biochemistry and Physiology Part A, 87, 797–801.

    Article  Google Scholar 

  • Radtke, R. L., Townsend, D. W., Folsom, S. D., & Morrison, M. A. (1990). Strontium: calcium concentration ratios in otoliths of herring larvae as indicators of environmental histories. Environmental Biology of Fishes, 27, 51–61.

    Article  Google Scholar 

  • Rangarajan, R., Ghosh, P., & Naggs, F. (2013). Seasonal variability of rainfall recorded in growth bands of the giant African land snail Lissachatina fulica (Bowdich) from India. Chemical Geology, 357, 223–230.

    Article  CAS  Google Scholar 

  • Rangarajan, R., & Ghosh, P. (2011). Role of water contamination within the GC column of a Gas Bench II peripheral on the reproducibility of 18O/16O ratios in water samples. Isotopes in Environ. Health Studies, 47(4), 498–511.

    CAS  Google Scholar 

  • Reis-Santos, P., Tanner, S. E., Elsdon, T. S., Cabral, H. N., & Gillanders, B. M. (2013). Effects of temperature, salinity and water composition on otolith elemental incorporation of Dicentrarchus labrax. Journal of Experimental Marine Biology and Ecology, 446, 245–252.

    Article  CAS  Google Scholar 

  • Ruttenberg, B. I., Hamilton, S. L., Hickford, M. J. H., Paradis, G. L., Sheehy, M. S., Standish, J. D., Ben-Tzvi, O., & Warner, R. R. (2005). Elevated levels of trace elements in cores of otoliths and their potential for use as natural tags. Marine Ecology Progress Series, 297, 273–281.

    Article  CAS  Google Scholar 

  • Sanchez-Jerez, P., Gillanders, B. M., & Kingsford, M. J. (2002). Spatial variability of trace elements in fish otoliths: comparison with dietary items and habitat constituents in seagrass meadows. Journal of Fish Biology, 61, 801–821. doi:10.1111/j.1095-8649.2002.tb00912.x.

    Article  CAS  Google Scholar 

  • Sarimin, A. S., & Mohamed, C. A. R. (2012). Elements Content in otolith as Pollution marker indicator for cultured sea bass (Lates calcarifer) of Malaysia. Journal of Environmental Protection, 3, 1689–1703.

    Article  Google Scholar 

  • Sarkar, A., Ramesh, R., Somayajulu, B. L. K., Agnihotri, R., Jull, A. J. T., & Burr, G. S. (2000). High resolution Holocene monsoon record from the eastern African Sea. Earth and Planetary Science Letters, 177(3–4), 209–218.

    Article  CAS  Google Scholar 

  • Sciortino, J. A., & Ravikumar, R. (1999). Potential Pollutants, their sources and their impacts. India: BOBP for Fisheries Management, Bay of Bengal Programme, Madras.

    Google Scholar 

  • Sengupta, S., & Sarkar, A. (2006). Stable isotope evidence of dual (Arabian and Bay of Bengal) vapour sources in monsoonal precipitation over north India. Earth and Planetary Science Letters, 250, 511–521.

    Article  CAS  Google Scholar 

  • Sen, S., Paul, M. K., & Borah, M. (2011). Study of some physico-chemical parameters of pond and river water with reference to correlation study. International Journal of ChemTech Research, 3(4), 1802–1807.

    CAS  Google Scholar 

  • Surge, D., & Walker, K. J. (2005). Oxygen isotope composition of modern and archaeological otoliths from estuarine hardhead catfish (Ariopsis felis) and their potential to record low-latitude climate change. Palaeogeography Palaeoclimatology Palaeoecology, 228, 179–191.

    Article  Google Scholar 

  • Sturrock, A. M., Trueman, C. N., Darnaude, A. M., & Hunter, E. (2012). Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? Journal of Fish Biology, 81, 766–795.

    Article  CAS  Google Scholar 

  • Terzer, S., Wassenaar, L. I., Araguás-Araguás, L. J., & Aggarwal, P. K. (2013). Global isocapes for δ 18O and δ 2H in precipitation: improved prediction using regionalized climatic regression models. Hydrology and Earth System Sciences, 17, 4713–4728.

  • Thresher, R. E. (1999). Elemental composition of otoliths as a stock delineator in fishes. Fisheries Research, 43, 165–204.

    Article  Google Scholar 

  • Walther, B. D., & Thorrold, S. R. (2006). Water, Not Food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Marine Ecology Progress Series, 311, 125–130.

    Article  CAS  Google Scholar 

  • Ward, N. I. (1995). Environmental analytical chemistry. In F. W. Fifield, & P. J. Hains (Eds.), Trace elements (pp. 320–328). UK: Blake Academia and Professional.

    Google Scholar 

  • Warner, R. R., Swearer, S. E., Caselle, J. E., Sheehy, M. S., & Paradis, G. L. (2005). Natal trace-elemental signatures in the otoliths of an open-coast fish. Limnology and Oceanography, 50, 1529–1542.

    Article  CAS  Google Scholar 

  • Xu, L. L., Chen, X. Q., Chen, J. S., Zhang, F. W., He, C., Zhao, J. P., & Yin, L. Q. (2012). Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China. Atmospheric Research, 104, 264–272.

    Article  Google Scholar 

  • Yada, T., Hirano, T., & Garu, E. G. (1994). Changes in plasma levels of the two prolactins and growth hormone during adaptation to different salinities in the euryhaline tilapia, Oreochromis mossambicus. General and Comparative Endocrinology, 93(2), 214–223.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author Mousumi Chatterjee is thankful to Prof. J. Srinivasan, Chairman, Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, India, for granting Research Associate ship during the study period. The authors are thankful to Gautham S.B. for analytical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousumi Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, M., Ghosh, P., Ramdas, L. et al. Isotopic and geochemical characterization of invader tilapia fishes from water bodies of West Bengal and Karnataka, India. Environ Monit Assess 187, 712 (2015). https://doi.org/10.1007/s10661-015-4929-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4929-0

Keywords

Navigation