Significant spatial variability of bioavailable PAHs in water column and sediment porewater in the Gulf of Mexico 1 year after the Deepwater Horizon oil spill

  • Yongseok Hong
  • Dana Wetzel
  • Erin L. Pulster
  • Pete Hull
  • Danny Reible
  • Hyun-Min Hwang
  • Pan Ji
  • Erik Rifkin
  • Edward Bouwer


One year after the Deepwater Horizon oil spill accident, semipermeable membrane devices (SPMDs) and polyethylene devices (PEDs) were deployed in wetland areas and coastal areas of the Gulf of Mexico (GOM) to monitor polycyclic aromatic hydrocarbons (PAHs). The measured PAH levels with the PEDs in coastal areas were 0.05–1.9 ng/L in water and 0.03–9.7 ng/L in sediment porewater. With the SPMDs, the measured PAH levels in wetlands (Barataria Bay) were 1.4–73 ng/L in water and 3.3–107 ng/L in porewater. The total PAH concentrations in the coastal areas were close to the reported baseline PAH concentrations in GOM; however, the total PAH concentrations in the wetland areas were one or two orders of magnitude higher than those reported in the coastal areas. In light of the significant spatial variability of PAHs in the Gulf’s environments, baseline information on PAHs should be obtained in specific areas periodically.


Deepwater Horizon oil spill Polycyclic aromatic hydrocarbons Semipermeable membrane devices Polyethylene devices Risk assessment 



The authors are grateful for the financial support from the Gulf of Mexico Research Initiative’s “Short-Term Continuing and Emergent Observations and Sampling (GRI III).”


This study was funded by the Gulf of Mexico Research Initiative’s “Short-Term Continuing and Emergent Observations and Sampling (GRI III),” project title: Application of Passive Samplers to Monitor PAHs Concentrations in Water, Sediment Porewater, Sediment, and Commercially Important Organisms in the Gulf of Mexico in Order to Quantify Site-Specific, Chronic Damages to the Natural Resources.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing of interests.

Human and animal rights and informed consent

This study did not involve human participants and animals.

Supplementary material

10661_2015_4867_MOESM1_ESM.doc (2.6 mb)
ESM 1 (DOC 2708 kb)


  1. Allan, S., Sower, G., & Anderson, K. (2011). Estimating risk at a superfund site using passive sampling devices as biological surrogates in human health risk models. Chemosphere, 85(6), 920–927.CrossRefGoogle Scholar
  2. Allan, S. E., Smith, B. W., & Anderson, K. A. (2012). Impact of the Deepwater Horizon oil spill on bioavailable polycyclic aromatic hydrocarbons in Gulf of Mexico coastal waters. Environmental Science & Technology, 46(4), 2033–2039.CrossRefGoogle Scholar
  3. Anderson, K. A., Sethajintanin, D., Sower, G., & Quarles, L. (2008). Field trial and modeling of uptake rates of in situ lipid-free polyethylene membrane passive sampler. Environmental Science & Technology, 42(12), 4486–4493.CrossRefGoogle Scholar
  4. Booij, K., & Smedes, F. (2010). An improved method for estimating in situ sampling rates of nonpolar passive samplers. Environmental Science & Technology, 44(17), 6789–6794.CrossRefGoogle Scholar
  5. Booij, K., Smedes, F., & van Weerlee, E. M. (2002). Spiking of performance reference compounds in low density polyethylene and silicone passive water samplers. Chemosphere, 46(8), 1157–1161.CrossRefGoogle Scholar
  6. Camilli, R., Di Iorio, D., Bowen, A., Reddy, C. M., Techet, A. H., Yoerger, D. R., et al. (2011). Acoustic measurement of the Deepwater Horizon Macondo well flow rate. Proceedings of the National Academy of Sciences USA, 109(50), 20235–20239.CrossRefGoogle Scholar
  7. Carls, M. G. (2006). Nonparametric identification of petrogenic and pyrogenic hydrocarbons in aquatic ecosystems. Environmental Science & Technology, 40(13), 4233–4239.CrossRefGoogle Scholar
  8. Diercks, A. R., Highsmith, R. C., Asper, V. L., Joung, D. J., Zhou, Z. Z., Guo, L. D., et al. (2010). Characterization of subsurface polycyclic aromatic hydrocarbons at the Deepwater Horizon site. Geophysical Research Letters, 37, L20602. doi: 10.1029/2010GL045046.CrossRefGoogle Scholar
  9. Greenwood, R., Mills, G., & Vrana, B. (2007). Comprehensive analytical chemistry. Volume 48. Passive sampling techniques in environmental monintoring. Wison & Wilson’s: Elsevier.Google Scholar
  10. Hawthorne, S. B., Grabanski, C. B., Miller, D. J., & Kreitinger, J. P. (2005). Solid-phase microextraction measurement of parent and alkyl polycyclic aromatic hydrocarbons in milliliter sediment pore water samples and determination of KDOC values. Environmental Science & Technology, 39(8), 2795–2803.CrossRefGoogle Scholar
  11. Huckins, J. N., Petty, J. D., & Booij, K. (2006). Monitors of organic chemicals in the environment:semipermeable membrane devices. New York: Springer.Google Scholar
  12. Huckins, J. N., Tubergen, M. W., & Manuweera, G. K. (1990). Semipermeable membrane devices containing model lipid: a new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere, 20(5), 533–552.CrossRefGoogle Scholar
  13. Hwang, H.-M., & Foster, G. D. (2006). Characterization of polycyclic aromatic hydrocarbons in urban stormwater runoff flowing into the tidal Anacostia River, Washington, DC, USA. Environmental Pollution, 140(3), 416–426.CrossRefGoogle Scholar
  14. Kemmer, G., & Keller, S. (2010). Nonlinear least-squares data fitting in Excel spreadsheets. Nature Protocols, 5(2), 267–281.CrossRefGoogle Scholar
  15. Lin, Q., & Mendelssohn, I. A. (2012). Impacts and recovery of the Deepwater Horizon oil spill on vegetation structure and function of coastal salt marshes in the northern Gulf of Mexico. Environmental Science & Technology, 46(7), 3737–3743.CrossRefGoogle Scholar
  16. Lohmann, R., & Muir, D. (2010). Global aquatic passive sampling (AQUA-GAPS): using passive samplers to monitor POPs in the waters of the world. Environmental Science & Technology, 44(3), 860–864.CrossRefGoogle Scholar
  17. Mayer, P., Vaes, W. H. J., Wijnker, F., Legierse, K. C. H. M., Kraaij, R., Tolls, J., et al. (2000). Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environmental Science & Technology, 34(24), 5177–5183.CrossRefGoogle Scholar
  18. Mitra, S., Kimmel, D. G., Snyder, J., Scalise, K., McGlaughon, B. D., Roman, M. R., et al. (2012). Macondo-1 well oil-derived polycyclic aromatic hydrocarbons in mesozooplankton from the northern Gulf of Mexico. Geophysical Research Letters, 39, L01605. doi: 10.1029/2011gl049505.CrossRefGoogle Scholar
  19. NRC (2003). Oil in the sea III: inputs, fates, and effects: committee on oil in the sea: inputs, fates, and effects. National Research Council, Washington, DC: The National Academies Press.Google Scholar
  20. Peterson, C. H., Rice, S. D., Short, J. W., Esler, D., Bodkin, J. L., Ballachey, B. E., et al. (2003). Long-term ecosystem response to the Exxon Valdez oil spill. Science, 302(5653), 2082–2086.CrossRefGoogle Scholar
  21. Reddy, C. M., Arey, J. S., Seewald, J. S., Sylva, S. P., Lemkau, K. L., Nelson, R. K., et al. (2012). Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences USA, 109(50), 20229–20234.CrossRefGoogle Scholar
  22. Reddy, C. M., Eglinton, T. I., Hounshell, A., White, H. K., Xu, L., Gaines, R. B., et al. (2002). The West Falmouth oil spill after thirty years: the persistence of petroleum hydrocarbons in marsh sediments. Environmental Science & Technology, 36(22), 4754–4760.CrossRefGoogle Scholar
  23. Reitsma, P. J., Adelman, D., & Lohmann, R. (2013). Challenges of using polyethylene passive samplers to determine dissolved concentrations of parent and alkylated PAHs under cold and saline conditions. Environmental Science & Technology, 47(18), 10429–10437.Google Scholar
  24. Schwacke, L. H., Smith, C. R., Townsend, F. I., Wells, R. S., Hart, L. B., Balmer, B. C., et al. (2013). Health of common bottlenose dolphins (Tursiops truncatus) in Barataria Bay, Louisiana, following the Deepwater Horizon oil spill. Environmental Science & Technology, 48(1), 93–103.CrossRefGoogle Scholar
  25. Tomaszewski, J. E., & Luthy, R. G. (2008). Field deployment of polyethylene devices to measure PCB concentrations in pore water of contaminated sediment. Environmental Science & Technology, 42(16), 6086–6091.CrossRefGoogle Scholar
  26. USEPA (2003). Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms PAH mixtures. Narragansett, RI, Duluth, MN, Newport, Or.: U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division; Mid-Continent Ecology Division; Western Ecology Division.Google Scholar
  27. Wetzel, D. L., & Pulster, E. L. (2012). Assessing polycyclic aromatic hydrocarbon levels in the wake of the Deepwater Horizon oil spill using semipermeable membrane devices. Mote Marine Laboratory: Technical Report Number, 1600.Google Scholar
  28. White, H. K., Hsing, P. Y., Cho, W., Shank, T. M., Cordes, E. E., Quattrini, A. M., et al. (2012). Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico. Proceedings of the National Academy of Sciences USA, 109(50), 20303–20308.CrossRefGoogle Scholar
  29. Whitehead, A., Dubansky, B., Bodinier, C., Garcia, T. I., Miles, S., Pilley, C., et al. (2011). Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes. Proceedings of the National Academy of Sciences USA, 109(50), 20298–20302.CrossRefGoogle Scholar
  30. Ylitalo, G. M., Krahn, M. M., Dickhoff, W. W., Stein, J. E., Walker, C. C., Lassitter, C. L., et al. (2012). Federal seafood safety response to the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences USA, 109(50), 20274–20279.CrossRefGoogle Scholar
  31. Zakaria, M. P., Takada, H., Tsutsumi, S., Ohno, K., Yamada, J., Kouno, E., et al. (2002). Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs. Environmental Science & Technology, 36(9), 1907–1918.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yongseok Hong
    • 1
    • 2
    • 3
  • Dana Wetzel
    • 4
  • Erin L. Pulster
    • 4
  • Pete Hull
    • 4
  • Danny Reible
    • 5
  • Hyun-Min Hwang
    • 6
  • Pan Ji
    • 1
  • Erik Rifkin
    • 3
  • Edward Bouwer
    • 1
  1. 1.Department of Geography and Environmental EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Environmental EngineeringDaegu UniversityGyeongsan-siRepublic of Korea
  3. 3.National Aquarium Conservation CenterBaltimore National AquariumBaltimoreUSA
  4. 4.Aquatic Toxicology ProgramMote Marine LaboratorySarasotaUSA
  5. 5.Department of Civil and Environmental EngineeringTexas Tech UniversityLubbockUSA
  6. 6.Department of Environmental Science and TechnologyTexas Southern UniversityHoustonUSA

Personalised recommendations