Skip to main content

Advertisement

Log in

Significant spatial variability of bioavailable PAHs in water column and sediment porewater in the Gulf of Mexico 1 year after the Deepwater Horizon oil spill

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

One year after the Deepwater Horizon oil spill accident, semipermeable membrane devices (SPMDs) and polyethylene devices (PEDs) were deployed in wetland areas and coastal areas of the Gulf of Mexico (GOM) to monitor polycyclic aromatic hydrocarbons (PAHs). The measured PAH levels with the PEDs in coastal areas were 0.05–1.9 ng/L in water and 0.03–9.7 ng/L in sediment porewater. With the SPMDs, the measured PAH levels in wetlands (Barataria Bay) were 1.4–73 ng/L in water and 3.3–107 ng/L in porewater. The total PAH concentrations in the coastal areas were close to the reported baseline PAH concentrations in GOM; however, the total PAH concentrations in the wetland areas were one or two orders of magnitude higher than those reported in the coastal areas. In light of the significant spatial variability of PAHs in the Gulf’s environments, baseline information on PAHs should be obtained in specific areas periodically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allan, S., Sower, G., & Anderson, K. (2011). Estimating risk at a superfund site using passive sampling devices as biological surrogates in human health risk models. Chemosphere, 85(6), 920–927.

    Article  CAS  Google Scholar 

  • Allan, S. E., Smith, B. W., & Anderson, K. A. (2012). Impact of the Deepwater Horizon oil spill on bioavailable polycyclic aromatic hydrocarbons in Gulf of Mexico coastal waters. Environmental Science & Technology, 46(4), 2033–2039.

    Article  CAS  Google Scholar 

  • Anderson, K. A., Sethajintanin, D., Sower, G., & Quarles, L. (2008). Field trial and modeling of uptake rates of in situ lipid-free polyethylene membrane passive sampler. Environmental Science & Technology, 42(12), 4486–4493.

    Article  CAS  Google Scholar 

  • Booij, K., & Smedes, F. (2010). An improved method for estimating in situ sampling rates of nonpolar passive samplers. Environmental Science & Technology, 44(17), 6789–6794.

    Article  CAS  Google Scholar 

  • Booij, K., Smedes, F., & van Weerlee, E. M. (2002). Spiking of performance reference compounds in low density polyethylene and silicone passive water samplers. Chemosphere, 46(8), 1157–1161.

    Article  CAS  Google Scholar 

  • Camilli, R., Di Iorio, D., Bowen, A., Reddy, C. M., Techet, A. H., Yoerger, D. R., et al. (2011). Acoustic measurement of the Deepwater Horizon Macondo well flow rate. Proceedings of the National Academy of Sciences USA, 109(50), 20235–20239.

    Article  Google Scholar 

  • Carls, M. G. (2006). Nonparametric identification of petrogenic and pyrogenic hydrocarbons in aquatic ecosystems. Environmental Science & Technology, 40(13), 4233–4239.

    Article  CAS  Google Scholar 

  • Diercks, A. R., Highsmith, R. C., Asper, V. L., Joung, D. J., Zhou, Z. Z., Guo, L. D., et al. (2010). Characterization of subsurface polycyclic aromatic hydrocarbons at the Deepwater Horizon site. Geophysical Research Letters, 37, L20602. doi:10.1029/2010GL045046.

    Article  Google Scholar 

  • Greenwood, R., Mills, G., & Vrana, B. (2007). Comprehensive analytical chemistry. Volume 48. Passive sampling techniques in environmental monintoring. Wison & Wilson’s: Elsevier.

    Google Scholar 

  • Hawthorne, S. B., Grabanski, C. B., Miller, D. J., & Kreitinger, J. P. (2005). Solid-phase microextraction measurement of parent and alkyl polycyclic aromatic hydrocarbons in milliliter sediment pore water samples and determination of KDOC values. Environmental Science & Technology, 39(8), 2795–2803.

    Article  CAS  Google Scholar 

  • Huckins, J. N., Petty, J. D., & Booij, K. (2006). Monitors of organic chemicals in the environment:semipermeable membrane devices. New York: Springer.

    Google Scholar 

  • Huckins, J. N., Tubergen, M. W., & Manuweera, G. K. (1990). Semipermeable membrane devices containing model lipid: a new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere, 20(5), 533–552.

    Article  CAS  Google Scholar 

  • Hwang, H.-M., & Foster, G. D. (2006). Characterization of polycyclic aromatic hydrocarbons in urban stormwater runoff flowing into the tidal Anacostia River, Washington, DC, USA. Environmental Pollution, 140(3), 416–426.

    Article  CAS  Google Scholar 

  • Kemmer, G., & Keller, S. (2010). Nonlinear least-squares data fitting in Excel spreadsheets. Nature Protocols, 5(2), 267–281.

    Article  CAS  Google Scholar 

  • Lin, Q., & Mendelssohn, I. A. (2012). Impacts and recovery of the Deepwater Horizon oil spill on vegetation structure and function of coastal salt marshes in the northern Gulf of Mexico. Environmental Science & Technology, 46(7), 3737–3743.

    Article  CAS  Google Scholar 

  • Lohmann, R., & Muir, D. (2010). Global aquatic passive sampling (AQUA-GAPS): using passive samplers to monitor POPs in the waters of the world. Environmental Science & Technology, 44(3), 860–864.

    Article  CAS  Google Scholar 

  • Mayer, P., Vaes, W. H. J., Wijnker, F., Legierse, K. C. H. M., Kraaij, R., Tolls, J., et al. (2000). Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environmental Science & Technology, 34(24), 5177–5183.

    Article  CAS  Google Scholar 

  • Mitra, S., Kimmel, D. G., Snyder, J., Scalise, K., McGlaughon, B. D., Roman, M. R., et al. (2012). Macondo-1 well oil-derived polycyclic aromatic hydrocarbons in mesozooplankton from the northern Gulf of Mexico. Geophysical Research Letters, 39, L01605. doi:10.1029/2011gl049505.

    Article  Google Scholar 

  • NRC (2003). Oil in the sea III: inputs, fates, and effects: committee on oil in the sea: inputs, fates, and effects. National Research Council, Washington, DC: The National Academies Press.

    Google Scholar 

  • Peterson, C. H., Rice, S. D., Short, J. W., Esler, D., Bodkin, J. L., Ballachey, B. E., et al. (2003). Long-term ecosystem response to the Exxon Valdez oil spill. Science, 302(5653), 2082–2086.

    Article  CAS  Google Scholar 

  • Reddy, C. M., Arey, J. S., Seewald, J. S., Sylva, S. P., Lemkau, K. L., Nelson, R. K., et al. (2012). Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences USA, 109(50), 20229–20234.

    Article  CAS  Google Scholar 

  • Reddy, C. M., Eglinton, T. I., Hounshell, A., White, H. K., Xu, L., Gaines, R. B., et al. (2002). The West Falmouth oil spill after thirty years: the persistence of petroleum hydrocarbons in marsh sediments. Environmental Science & Technology, 36(22), 4754–4760.

    Article  CAS  Google Scholar 

  • Reitsma, P. J., Adelman, D., & Lohmann, R. (2013). Challenges of using polyethylene passive samplers to determine dissolved concentrations of parent and alkylated PAHs under cold and saline conditions. Environmental Science & Technology, 47(18), 10429–10437.

    CAS  Google Scholar 

  • Schwacke, L. H., Smith, C. R., Townsend, F. I., Wells, R. S., Hart, L. B., Balmer, B. C., et al. (2013). Health of common bottlenose dolphins (Tursiops truncatus) in Barataria Bay, Louisiana, following the Deepwater Horizon oil spill. Environmental Science & Technology, 48(1), 93–103.

    Article  Google Scholar 

  • Tomaszewski, J. E., & Luthy, R. G. (2008). Field deployment of polyethylene devices to measure PCB concentrations in pore water of contaminated sediment. Environmental Science & Technology, 42(16), 6086–6091.

    Article  CAS  Google Scholar 

  • USEPA (2003). Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms PAH mixtures. Narragansett, RI, Duluth, MN, Newport, Or.: U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division; Mid-Continent Ecology Division; Western Ecology Division.

  • Wetzel, D. L., & Pulster, E. L. (2012). Assessing polycyclic aromatic hydrocarbon levels in the wake of the Deepwater Horizon oil spill using semipermeable membrane devices. Mote Marine Laboratory: Technical Report Number, 1600.

  • White, H. K., Hsing, P. Y., Cho, W., Shank, T. M., Cordes, E. E., Quattrini, A. M., et al. (2012). Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico. Proceedings of the National Academy of Sciences USA, 109(50), 20303–20308.

    Article  CAS  Google Scholar 

  • Whitehead, A., Dubansky, B., Bodinier, C., Garcia, T. I., Miles, S., Pilley, C., et al. (2011). Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes. Proceedings of the National Academy of Sciences USA, 109(50), 20298–20302.

    Article  Google Scholar 

  • Ylitalo, G. M., Krahn, M. M., Dickhoff, W. W., Stein, J. E., Walker, C. C., Lassitter, C. L., et al. (2012). Federal seafood safety response to the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences USA, 109(50), 20274–20279.

    Article  CAS  Google Scholar 

  • Zakaria, M. P., Takada, H., Tsutsumi, S., Ohno, K., Yamada, J., Kouno, E., et al. (2002). Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs. Environmental Science & Technology, 36(9), 1907–1918.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the Gulf of Mexico Research Initiative’s “Short-Term Continuing and Emergent Observations and Sampling (GRI III).”

Funding

This study was funded by the Gulf of Mexico Research Initiative’s “Short-Term Continuing and Emergent Observations and Sampling (GRI III),” project title: Application of Passive Samplers to Monitor PAHs Concentrations in Water, Sediment Porewater, Sediment, and Commercially Important Organisms in the Gulf of Mexico in Order to Quantify Site-Specific, Chronic Damages to the Natural Resources.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing of interests.

Human and animal rights and informed consent

This study did not involve human participants and animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Bouwer.

Electronic Supplementary Material

ESM 1

(DOC 2708 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Wetzel, D., Pulster, E.L. et al. Significant spatial variability of bioavailable PAHs in water column and sediment porewater in the Gulf of Mexico 1 year after the Deepwater Horizon oil spill. Environ Monit Assess 187, 646 (2015). https://doi.org/10.1007/s10661-015-4867-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4867-x

Keywords

Navigation