Skip to main content
Log in

Direct estimation of dissolved organic carbon using synchronous fluorescence and independent component analysis (ICA): advantages of a multivariate calibration

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Dissolved organic carbon (DOC) is frequently used as a diagnostic parameter for the identification of environmental contamination in aqueous systems. Since this organic matter is evolving and decaying over time. If samples are collected under environmental conditions, some sample stabilization process is needed until the corresponding analysis can be made. This may affect the analysis results. This problem can be avoided using the direct determination of DOC. We report a study using in situ synchronous fluorescence spectra, with independent component analysis to retrieve relevant major spectral contributions and their respective component contributions, for the direct determination of DOC. Fluorescence spectroscopy is a very powerful and sensitive technique to evaluate vestigial organic matter dissolved in water and is thus suited for the analytical task of direct monitoring of dissolved organic matter in water, thus avoiding the need for the stabilization step. We also report the development of an accurate calibration model for dissolved organic carbon determinations using environmental samples of humic and fulvic acids. The method described opens the opportunity for a fast, in locus, DOC estimation in environmental or other field studies using a portable fluorescence spectrometer. This combines the benefits of the use of fresh samples, without the need of stabilizers, and also allows the interpretation of various additional spectral contributions based on their respective estimated properties. We show how independent component analysis may be used to describe tyrosine, tryptophan, humic acid and fulvic acid spectra and, thus, to retrieve the respective individual component contribution to the DOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. A linear model shows linear dependence with all its parameters, which means that the model partial derivatives with respect to each of its parameters do not depend on any of the model's parameter value.

  2. ICA components are sometimes symmetrical to what we see as a spectral signal, and requiring a sign change operation to rotate by 180°.

References

  • Ahmad, S. R., & Reynolds, D. M. (1995). Synchronous fluorescence spectroscopy of wastewater and some potential constituents. Water Research, 29(6), 1599–1602.

    Article  CAS  Google Scholar 

  • Azevedo, J. C. R., & Nozaki, J. (2008). Análise de fluorescência de substâncias húmicas extraídas da água, solo e sedimento da Lagoa dos Patos/MS. Quimica Nova, 31(6), 1324–1329.

    Google Scholar 

  • Baker, A. (2002). Spectrophotometric discrimination of river dissolved organic matter. Hydrological Processes, 16, 3203–3213.

    Article  Google Scholar 

  • Belline, S., & Rocca, F. (1990). Asymptotically efficient blind deconvolution. Signal Processing, 20(3), 193–209.

    Article  Google Scholar 

  • Berger, Y. G. (2007). A Jackknife Variance Estimator for Unistage Stratified Samples with Unequal Probabilities. Biometrika, 94, 953–964.

    Article  Google Scholar 

  • Bos, A. van den. (2007). Precise and Accurate Estimation, in Parameter Estimation for Scientists and Engineers. Hoboken, NJ, USA: John Wiley & Sons, Inc.

  • Carstea, E. M. (2012). Fluorescence spectroscopy as a potential tool for in-situ monitoring of dissolved organic matter in surface water systems. In: N. Balkis (Ed). Water Pollution, 47-68.

  • Chen, J., Gu, B. H., Lebouf, E. J., Pan, H. J., & Dai, S. (2002). Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere, 48(1), 59–68.

    Article  CAS  Google Scholar 

  • Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science and Technology, 37, 5701–5710.

    Article  CAS  Google Scholar 

  • Comon, P. (1994). Independent component analysis, A new concept? Signal Processing, 36(3), 287–314.

    Article  Google Scholar 

  • Eaton, J. W., Bateman, D., Hauberg, S., & Wehbring, R. (2015). GNU Octave manual: a high-level interactive language for numerical computations, version 3.8.0, CreateSpace Independent Publishing Platform, [http://www.gnu.org/software/octave/doc/interpreter]. Accessed 1 February 2015.

  • Frimmel, F. H. (1998). Characterization of natural organic matter as major constituents in aquatic systems. Journal of Contaminant Hydrology, 35, 201–216.

    Article  CAS  Google Scholar 

  • Gabriel, D., Matias, T., Costa Pereira, J., & Araújo, R. (2013). Predicting Gas Emissions in a Cement Kiln Plant using Hard and Soft Modelling Strategies, Emerging Technologies & Factory Automation (ETFA), IEEE 18th Conference, 1, 1-8. doi: 10.1109/ETFA.2013.6648036

  • Guo, X. J., Yuan, D. H., Jiang, J. Y., Zhang, H., & Deng, Y. (2013). Detection of dissolved organic matter in saline-alkali soils using synchronous fluorescence spectroscopy and principal component analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 104, 280–286.

    Article  CAS  Google Scholar 

  • Hudson, N., Baker, A., Ward, D., & Reynolds, D. M. (2007). Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters - a review. River Research and Applications, 23, 631–649.

    Article  Google Scholar 

  • Hur, J., & Cho, J. (2012). Prediction of BOD, COD and Total Nitrogen Concentration in a Typical Urban River using a fluorescence excitation-emission matrix with PARAFAC and UV absorption indices. Sensors, 12, 972–986.

    Article  CAS  Google Scholar 

  • Hur, J., Lee, B., Lee, T., & Park, D. (2010). Estimation of Biological Oxygen Demand and Chemical Oxygen Demand for Combined Sewer Systems Using Synchronous Fluorescence Spectra. Sensors, 10, 2460–2471.

    Article  CAS  Google Scholar 

  • Kavanagh, R. J., Burnison, B. K., Frank, R. A., Solomon, K. R., & Kraak, G. D. (2009). Detecting oil sands process-affected waters in the Alberta oil sands region using synchronous fluorescence spectroscopy. Chemosphere, 76(1), 120–126.

    Article  CAS  Google Scholar 

  • Lombardi, A. T., & Jardim, W. F. (1999). Fluorescence spectroscopy of high performance liquid chromatography fractionated marine and terrestrial organic materials. Water Research, 33(2), 512–520.

    Article  CAS  Google Scholar 

  • Ma, H., Allen, H. E., & Yin, Y. (2001). Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent. Water Research, 35(4), 985–996.

    Article  CAS  Google Scholar 

  • Mafra, A. L., Senesi, N., Brunetti, G., Miklós, A. A. W., & Melfi, A. J. (2007). Humic acids from hydromorphic soils of the upper Negro river basin, Amazonas: Chemical and spectroscopic characterization. Geoderma, 138, 170–176.

    Article  CAS  Google Scholar 

  • Marchini, J.L., Heaton, C., & Ripley, B.D. (2014). Package ‘fastICA’ - Algorithms to perform ICA and Projection Pursuit, [http://cran.r-project.org/web/packages/fastICA/index.html]. Accessed 7 December 2014.

  • Massart, D. L., Vandeginste, B. G. M., Deming, S. M., Michotte, Y., & Kaufman, L. (1998). Chemometrics: a textbook. Amsterdam: Elsevier.

    Google Scholar 

  • McDonald, S., Bishop, A. G., Prenzler, P. D., & Robards, K. (2004). Analytical chemistry of freshwater humic substances. Analytica Chimica Acta, 527(2), 105–124.

    Article  CAS  Google Scholar 

  • Melendez-Pastor, I., Almendro-Candel, M. B., Navarro-Pedreño, J., Gómez, I. M., Lillo, G., & Hernández, E. I. (2013). Monitoring Urban Wastewaters Characteristics by Visible and Short Wave Near-Infrared Spectroscopy. Water, 5(4), 2026–2036.

    Article  CAS  Google Scholar 

  • Murphy, K. R., Stedmon, C. A., Waite, G. T. D., & Ruiz, M. (2008). Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Marine Chemistry, 108, 40–58.

    Article  CAS  Google Scholar 

  • Octave community, GNU Octave 3.8.2. (2014). [http://www.gnu.org/software/octave/]. Accessed 10 December 2014.

  • Oliveira, J. L., Boroski, M., Azevedo, J. C. R., & Nozaki, J. (2006). Spectroscopic investigation of humic substances in a tropical lake during a complete hydrological cycle. Acta Hydrochimica et Hydrobiologica, 34, 608–617.

    Article  CAS  Google Scholar 

  • Peuravuori, J., Koivikko, R., & Pihlaja, K. (2002). Characterization, differentiation and classification of aquatic humic matter separated with different sorbents: synchronous scanning fluorescence spectroscopy. Water Research, 36, 4552–4562.

    Article  CAS  Google Scholar 

  • Pons, M., Bonté, S. L., & Potier, O. (2004). Spectral analysis and fingerprinting for biomedia characterization. Journal of Biotechnology, 113, 211–230.

    Article  CAS  Google Scholar 

  • R Core Team (2012) R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, [http://www.R-project.org]. Accessed 10 December 2014.

  • Retamal, L., Vincent, W. F., Martineau, C., & Osburn, C. L. (2007). Comparison of the optical properties of dissolved organic matter in two river-influenced coastal regions of the Canadian Arctic. Estuarine. Coastal and Shelf Science, 72, 261–272.

    Article  Google Scholar 

  • Rochelle-Newall, E., Hulot, F. D., Janeau, J. L., & Merroune, A. (2014). CDOM fluorescence as a proxy of DOC concentration in natural waters: a comparison of four contrasting tropical systems. Environmental Monitoring and Assessment, 186, 589–596.

    Article  CAS  Google Scholar 

  • Savitzky, A., & Golay, M. J. E. (1964). Soothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8), 1627–1639.

    Article  CAS  Google Scholar 

  • Senesi, N. (1990). Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals. Part II: The fluorescence spectroscopy approach. Analytica Chimica Acta, 232, 77–106.

    Article  CAS  Google Scholar 

  • Sharma, S. K., Maeng, S. K., Nam, S. N., & Amy, G. (2011). Characterization Tools for Differentiating Natural Organic Matter from Effluent Organic Matter. In P. Wilderer (Ed.), Treatise on Water Science (pp. 417–427). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Sleighter, R. L., McKee, G. A., & Hatcher, P. G. (2009). Direct Fourier transform mass spectral analysis of natural waters with low dissolved organic matter. Organic Geochemistry, 40, 119–125.

    Article  CAS  Google Scholar 

  • Thurman, E. M., & Malcolm, R. L. (1981). Preparative isolation of aquatic humic substances. Environmental Science and Technology, 4, 463–466.

    Article  Google Scholar 

  • van den Bos, A. (2007). Precise and Accurate Estimation, in Parameter Estimation for Scientists and Engineers. Hoboken: John Wiley & Sons, Inc.

    Google Scholar 

  • Westerhoff, P., & Anning, D. (2000). Concentrations and characteristics of organic carbon in surface water in Arizona - influence of urbanization. Journal of Hydrology, 236(3-4), 202–222.

    Article  CAS  Google Scholar 

  • Xue, S., Zhao, Q., Wei, L., Song, W., & Tie, M. (2013). Fluorescence spectroscopic characterization of dissolved organic matter fractions in soils in soil aquifer treatment. Environmental Monitoring and Assessment, 185, 4591–4603.

    Article  CAS  Google Scholar 

  • Zumstein, J., & Buffle, J. (1989). Circulation of pedogenic and aquagenic organic matter in an eutrophic lake. Water Research, 23(2), 229–239.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the funding from CAPES (BEX 12102/13-0), CNPq (Process 474900 / 2011-8), the Araucaria Foundation (02/2013 PQ/FA - FPT), FINEP (CT-Infra / 2010 and CT-Infra / 2011 by FNDCT Resources, NIPTA subproject), from FCT Fundação para a Ciência e Tecnologia do Ministério da Educação e Ciência of Portugal (PEst-OE/QUI/UI0313/2014), and the support of the Coimbra Chemistry Centre and Department of Chemistry and Biology/UTFPR.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Cesar R. de Azevedo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Almeida Brehm, F., de Azevedo, J.C.R., da Costa Pereira, J. et al. Direct estimation of dissolved organic carbon using synchronous fluorescence and independent component analysis (ICA): advantages of a multivariate calibration. Environ Monit Assess 187, 703 (2015). https://doi.org/10.1007/s10661-015-4857-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4857-z

Keywords

Navigation