Skip to main content
Log in

Identification of possible sources of atmospheric PM10 using particle size, SEM-EDS and XRD analysis, Jharia Coalfield Dhanbad, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Identification of responsible sources of pollution using physical parameter particulate matter (PM)10 in a critically polluted area is discussed in this paper. Database was generated by Ambient Air Quality Monitoring (AAQM) with respect to PM10 and PM2.5 in 18 monitoring stations at Jharia coalfield as per the siting criteria (IS: 5182, Part XIV) during 2011 to 2012. Identification of the probable sources of PM10 was carried out through particle size, shape, morphology analysis (scanning electron microscopy (SEM)), suitable compounds (X-ray diffraction (XRD)) and elements (energy-dispersive spectroscopy (EDS)). Monitoring stations nearby opencast mine were affected by the big-sized and irregular-shaped particles; on the other hand, monitoring stations nearby city were affected by the small-sized and regular-shaped particles. In a city area, additional sources like diesel generator (DG) set, construction activities, coal burning, etc., were identified. Blistering effects were also observed in the particles from mine fire-affected areas. Using the X-ray diffraction technique, presence of FeS2, CuO, FeSO4 and CuSO4 compounds was observed, which indicates the effects of mine fire on particulate emission due to presence of SO4 2− and S2− ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abernathy, C. (2001). “Exposure and health effects.” United States Environmental Protection Agency, Washington, DC, USA. Chapter 3. <http://www.who.int> (Oct. 12, 2013).

  • Arnesen, A. K. M., & Krogstad, T. (1998). Sorption and desorption of fluoride in soil polluted from the aluminium smelter at Årdal (Western Norway). Water Air Soil Pollution, 103, 357–373.

    Article  CAS  Google Scholar 

  • Azad, A. K., & Kitada, T. (1998). Characteristics of the air pollution in the city of Dhaka, Bangladesh in winter. Atmospheric Environment, 32, 1991–2005.

    Article  CAS  Google Scholar 

  • Bart, O. (1993). The association of air pollution and mortality: examining the case for inference. Archives of Environmental Health, 48, 336–341.

    Article  Google Scholar 

  • Bernabe, J. M., Carretero, M. I., & Galan, E. (2005). Minerology and origin of atmospheric particles in the industrial area of Huelva (S.W. Spain). Atmospheric Environment, 39, 6777–6789.

    Article  CAS  Google Scholar 

  • Berry, I.G., Selected powder diffraction data for mineralogy, JCPDS, Swanthmore, P. A. 1974.

  • Cachier, H., Aulagnier, F., Sarda, R., Gautier, F., Masclet, P., Besombes, J.-L., Marchand, N., Despiau, S., Croci, D., Mallet, M., Laj, P., Marinoni, A., Deveau, P. A., Roger, J. C., Putuad, J. P., Dingenen, R. V., Acqua, A. D., Viidanoja, J., Santos, S. M.-D., Liousse, C., Cousin, F., Rosset, R., Gardrat, E., & Lacaux, C. G. (2005). Aerosol studies during the ESCOMPTE experiment: an overview. Atmospheric Research, 74, 547–563.

    Article  CAS  Google Scholar 

  • Central Pollution Control Board, Delhi, India (2007–2008). National ambient air quality standards. <http://www.cpcb.nic.in> (Oct. 10, 2013).

  • Costa, D. L., & Dreher, K. L. (1997). Bio available transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environmental Health Perspectives, 105, 1053–1060.

    Article  Google Scholar 

  • Cullity, B. D. (1959). Elements of X-ray diffraction (p. p 157). New York: Addition-Wesley.

    Google Scholar 

  • Dockery, D. W., & Pope III, C. A. (1994). Acute respiratory effects of particulate air pollution. Annual Review of Public Health, 15, 107–132.

    Article  CAS  Google Scholar 

  • Esbert, R. M., Diaz Pache, F., Alonso, F. J., Ordaz, J., & Grossi, C. M. (1996). “Solid particles of atmospheric pollution found on the Hontoria limestone of Burgos Cathedral (Spain)”. In Proceedings of the Eighth International Congress on Deterioration and Conservation Stone (pp. pp. 393–pp. 399). Berlin, Germany: Riederer, J. (Ed.).

    Google Scholar 

  • Fuglsang, K. (2002). “An atmospheric sampler for measurement of dust deposition rates around fugitive sources.”. Journal of Air and Waste Management Association, 52, 789–795.

    Article  CAS  Google Scholar 

  • Gao, Z., Chen, Y., Randlett, M. D., Zhao, X., Findell, J. L., Kieber, J. J., & Schaller, G. E. (2003). Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. Journal of Biology Chemistry, 278, 34725–34732.

    Article  CAS  Google Scholar 

  • Ghose, M. K., & Banerjee, S. K. (1997). Physico-chemical characteristics of the air borne dust emitted by coal washeries. Energy Environment Monitor, 13, 11–16.

    Google Scholar 

  • Ghose, M. K., & Majee, S. R. (2000a). Source of air pollution due to coal mining and their impacts in Jharia coalfield. Environmental International, 26, 81–85.

    Article  CAS  Google Scholar 

  • Ghose, M. K., & Sinha, D. K. (1990). Air pollution control plan in coal mining areas. Indian Journal of Environmental Protection, 10, 752–757.

    CAS  Google Scholar 

  • Ghose, M. K., & Majee, S. R. (2000b). Assessment of dust generation due to opencast coal mining—an Indian case study. Environmental Monitoring and Assessment, 61, 255–263.

    Article  CAS  Google Scholar 

  • Haidouti, C., Chronopoulou, A., & Chronopoulos, J. (1993). Effects of fluoride emissions from industry on the fluoride concentration of soils and vegetation. Biochemical Systematic and Ecology, 21, 195–208.

    Article  CAS  Google Scholar 

  • Hartley, W., Lepp, N. W., & Edwards, R. (2004). Arsenic and heavy metal mobility in iron oxide-amended contaminated soil evaluated by short and long-term leaching tests. Environmental Pollution, 131, 495–504.

    Article  CAS  Google Scholar 

  • Krishnamurthy, N., and Gupta, C. K. (2005). Extractive metallurgy of rare earths. CRC (Printed in the United States of America). <http//www.crcpress.com> (Oct. 10, 2013).

  • Lee, J. H., Hopke, P. K., & Turner, J. R. (2006). Source identification of airborne PM2.5 at the St. Louis-Midwest supersite. Geophysical Research, 111, 1325–1341.

    Article  Google Scholar 

  • Murray, F., Mc Granahan, G., & Kuylenstierna, J. C. I. (2001). Assessing health effects of air pollution on developing countries. Water, Air and Soil Pollution, 130, 1799–1804.

    Article  Google Scholar 

  • Pateraki, S. T., Asimakopoulos, D. N., Flocas, H. A., Maggos, T. H., & Vasilako, C. H. (2012). The role of meterology on different sized aerosol fractions (PM10, PM2.5, PM2.5–10). Science of the Total Environment, 419, 124–135.

    Article  CAS  Google Scholar 

  • Petrovic, S., Urch, B., Brook, J., Datema, J., Purdham, J., Liu, L., Lukic, Z., Zimmerman, B., Tofler, G., Downar, E., Corey, P., Tarlo, S., Broder, I., Dales, R., & Silverman, F. (2000). Cardio-respiratory effects of concentrated ambient PM2.5: a pilot study using controlled human exposures. Inhalation Toxicology, 12, 173–188.

    Article  CAS  Google Scholar 

  • Prabha, J., Singh, G., & Sinha, I. N. (2006). Emission factor equation for haul roads: the Indian perspective. Indian Journal of Air Pollution Control, 1, 37–43.

    Google Scholar 

  • Ram, S. S., Majumdar, S., Chaudhuri, P., Chanda, S., Santra, S. C., Maiti, P. K., Sudarshan, M., & Chakraborty, A. (2012). “SEM-EDS: an important tool for air pollution bio-monitoring.” US National Library of Medicine National Institutes of Health. UGC-DAE Consortium for Scientific Research, III/LB-8, Salt Lake (pp. pp. 201–pp. 203). Kolkata 700098, WB, India: Prevention and abatement handbook.

    Google Scholar 

  • Rao, C. S. (2006). Environmental pollution control engineering. New Age International.

  • Salam, A., Bauer, H., Kassin, K., Ullah, S. M., & Puxbaum, H. (2003). Aerosol chemical characteristics of a mega-city in Southeast Asia (Dhaka, Bangladesh). Atmospheric Environment, 37, 2517–2528.

    Article  CAS  Google Scholar 

  • Senthil, K. R., & Rajkumar, P. (2014). Characterization of minerals in air dust particles in the state of Tamilnadu, India through FTIR, XRD and SEM analyses. Infrared Physics & Technology, 67, 30–41.

    Article  Google Scholar 

  • Singh, G., & Sharma, P. K. (1992). Ambient air quality status in certain coal mining areas of Raniganj coalfield. Energy Environment Monitor, 7, 56–65.

    Google Scholar 

  • Srivastava, A., & Jain, V. K. (2007c). Size distribution and source identification of suspended particulate matters in atmospheric aerosols over Delhi. Chemosphere, 68, 579–589.

    Article  CAS  Google Scholar 

  • Stevens, D. P., McLaughlin, M. J., & Alston, A. M. (1997). Phytotoxicity of aluminium fluoride complexes and their uptake from solution culture by Avena sativa and Lycopersicum esculentum. Plant Soil, 192, 81–93.

    Article  CAS  Google Scholar 

  • Tripathi, B. D., Chaturvedi, S. S., & Tripathi, R. D. (1996). Seasonal variation in ambient air concentration of nitrate and sulphate aerosols in a tropical city, Varanasi. Atmospheric Environment, 30(15), 2773–2778.

    Article  CAS  Google Scholar 

  • Venugopal, B., & Luckey, T. D. (1978). Metal toxicity in mammals. In Chemical toxicology of metals and metalloids (vol. 2, pp. 32–36). New York: Academic.

    Google Scholar 

  • Wanquan, T., & Wang, T. (2004). Gaseous and particulate air pollution in the Lanzhou Valley, China. Science of the Total Environment, 320, 163–176.

    Article  Google Scholar 

  • World Health Organization (WHO), Expert committee on Biological Standardization (1971). Twenty-third report. <http//www.whqlibdoc.who.int> (Oct. 10, 2013).

  • Zhang, X., Zwiers, F. W., Hegerl, G. C., Lambert, F. H., Gillett, N. P., Solomon, S., Stott, P. A., & Nozawa, T. (2007). Detection of human influence on twentieth-century precipitation trends. Nature, 448, 461–465.

    Article  CAS  Google Scholar 

  • Ziomas, I. C., Suppan, P., Rappengluch, B., Balis, D., Tzoumaka, P., Melas, D., Papayannis, A., Fabian, P., & Zerefos, C. S. (1995a). A contribution to the study of photochemical smog in the greater Athens area. Beitraege zur Physik der Atmosphare, 68, 198–203.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Indian School of Mines, Dhanbad, India, for providing all necessary facilities to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debananda Roy.

Electronic supplementary material

ESM 1

(DOCX 1.06 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, D., Singh, G. & Gosai, N. Identification of possible sources of atmospheric PM10 using particle size, SEM-EDS and XRD analysis, Jharia Coalfield Dhanbad, India. Environ Monit Assess 187, 680 (2015). https://doi.org/10.1007/s10661-015-4853-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4853-3

Keywords

Navigation