Skip to main content
Log in

Mercury concentrations and health risk assessment for two fish species, Barbus grypus and Barbus luteus, from the Maroon River, Khuzestan Province, Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The purposes of this study are to investigate the concentration of mercury in edible muscle tissues of two popular edible fish species: the Shirbot (Barbus grypus) and Hemri (Barbus luteus), from the Maroon River, Khuzestan Province, Iran, and to assess the risk of their toxicity on human health. We collected 20 samples of each species from the river, and after biometry and determination of their age and sex, concentration of total mercury (assumed to be about 100 % methylmercury) was measured. For B. grypus, mercury averaged 0.16 ± 0.02 μg g−1 wet weight, and for B. luteus, it averaged 0.08 ± 0.02 μg g−1 wet weight. Although mercury has been reported to accumulate with age, length, and trophic level in many studies, we did not find a significant correlation among age, sex, length, and mercury content in either of these omnivorous species. Mercury levels (maximum 0.37 μg g−1 wet weight) were below international standards. Consumption of these fish would not pose a serious health hazard to Iranian consumers at the average national consumption of 17.53 g day−1. However, high-end consumers eating more than 250 g week−1 and pregnant women should be attentive in choosing fish low in mercury, for example, B. luteus rather than B. grypus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Askary Sari, A., & Mahmoodi, M. (2012). Mercury concentrations in commercial fish from freshwater and saltwater. Bulletin of Environmental Contamination and Toxicology, 88, 162–165. doi:10.1007/s00128-011-0510-x.

    Article  Google Scholar 

  • Atta, A., Voegborol, R. B., & Agorku, E. S. (2012). Total mercury distribution in different tissues of size species of freshwater fish from the Kpong hydroelectric reservoir in Ghana. Environmental Monitoring and Assessment, 184, 3259–3265. doi:10.1007/s10661-011-2186-4.

    Article  CAS  Google Scholar 

  • Begum, A., Amin, M. N., Kaneco, S., & Ohta, K. (2005). Selected elemental composition of the muscle tissue of three species of fish, Tilapia nilotica, Cirrhina mrigala and Clarius batrachus, from the fresh water Dhanmondi Lake in Bangladesh. Food Chemistry, 93, 439–443. doi:10.1016/j.foodchem.2004.10.021.

    Article  CAS  Google Scholar 

  • Bloom, N. S. (1992). On the chemical form of mercury in edible fish and marine invertebrate tissue. Can J Fish Aquat Sci, 49, 1010–1017. doi:10.1139/f92-113.

    Article  CAS  Google Scholar 

  • Bonsignore, M., Salvagio Manta, D., Oliveri, E., Sprovieri, M., Basilone, G., Bonanno, A., Falco, F., Traina, A., & Mazzola, S. (2013). Mercury in fishes from Augusta Bay (Southern Italy): risk assessment and health implication. Food Chem Toxicol, 56, 148–194. doi:10.1016/j.fct.2013.02.025.

    Article  Google Scholar 

  • Burger, J., & Gochfeld, M. (2005). Heavy metals in commercial fish in New Jersey. Environmental Research, 99, 403–412. doi:10.1016/j.envres.2005.02.001.

    Article  CAS  Google Scholar 

  • Burger, J., Gochfeld, M., Batang, Z., Alikunhi, N., Al-Jahdali, R., Al-Jebreen, D., Aziz, M. A. M., & Al-Suwailem, A. (2014a). Fish consumption behavior and rates in native and non-native people in Saudi Arabia. Environmental Research, 133, 141–148. doi:10.1016/j.envres.2014.05.014.

    Article  CAS  Google Scholar 

  • Burger, J., Gochfeld, M., Batang, Z., Alikunhi, N., Al-Jahdali, R., Al-Jebreen, D., Aziz, M. A. M., & Al-Suwailem, A. (2014b). Interspecific and locational differences in metal levels in edible fish tissue from Saudi Arabia. Environmental Monitoring and Assessment, 186, 6721–6746. doi:10.1007/s10661-014-3885-4.

    Article  CAS  Google Scholar 

  • Cai, S., Ni, Z., Li, Y., Shen, Z., Xiong, Z., Zhang, Y., & Zhou, Y. (2012). Metals in the tissues of Two fish species from the rare and endemic fish nature reserve in the upper reaches of the Yangtze River, China. Bull Environ Contam Toxicol, 88, 922–927. doi:10.1007/s00128-012-0564-4.

    Article  CAS  Google Scholar 

  • Canli, M., & Atli, G. (2003). The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environmental Pollution, 121(1), 129–136. doi:10.1016/S0269-7491(02)00194-X.

    Article  CAS  Google Scholar 

  • Canli, M., & Furness, R. W. (1993). Toxicity of heavy metals dissolved in sea water and influences of sex and size on metal accumulation and tissue distribution in the Norway lobster Nephrops norvegicus. Mar Environ Toxicol Chem, 14, 819–828. doi:10.1016/0141-1136 (93)90090-M.

    Article  Google Scholar 

  • Censi, P., Spoto, S., Saiano, F., Sprovieri, M., Mazzola, S., Nardone, G., Di Geronimo, S. I., Punturo, R., & Ottonello, D. (2006). Heavy metals in coastal water system. A case study from the North Western Gulf of Thailand. Chemosphere, 64, 1167–1176. doi:10.1016/j.chemosphere.2005.11.008.

    Article  CAS  Google Scholar 

  • Chen, C. Y., & Folt, C. L. (2005). High plankton densities reduce mercury biomagnification. Environ Sci Technol, 39, 115–121. doi:10.1021/es0403007.

    Article  CAS  Google Scholar 

  • Commission of the European Communities (2006). Commission regulation (EC) no. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union, The commission of the European communities, Brussels, L364-5/L364-24.

  • Downs, S. G., Macleod, C. L., & Laster, J. N. (1998). Mercury in precipitation and its relation to bioaccumulation in fish: a literature review. Water Air Soil Pollut, 108, 149–187.

    Article  CAS  Google Scholar 

  • Ebrahimi, M. (2004). Effects of in vivo and in vitro zinc and cadmium treatment on sperm steroidogenesis of the African catfish (Clarias gairepnius). IJVR, 6(2), 12–25.

    Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations/World Health Organization) (2005). Statistical databases.<http://faostat.fao.org> (accessed 10.12.12).

  • FAO (Food and Agriculture Organizations of United Nations) (2009). The state of world fisheries and aquaculture. Rome, Italy.

  • FAO/WHO (2004) List of maximum levels recommended for communities by the Joint FAO/WHO Codex Alimentarius Commission.

  • Goldblum, D. K., Rak, A., Ponnapalli, M. D., & Clayton, C. J. (2006). The Fort Totten mercury pollution risk assessment: a case history. Journal of Hazardous Materials, 136, 406–417. doi:10.1016/j.jhazmat.2005.11.047.

    Article  CAS  Google Scholar 

  • Greenfield, B. K., & Jahn, A. (2010). Mercury in San Francisco Bay forage fish. Environmental Pollution, 158, 2716–2724. doi:10.1016/j.envpol.2010.04.010.

    Article  CAS  Google Scholar 

  • He, T., Lu, J., Yang, F., & Feng, X. (2007). Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario. The Science of the Total Environment, 386, 53–64. doi:10.1016/j.scitotenv.2007.07.022.

    Article  CAS  Google Scholar 

  • Houserova, P., KubanV, K. S., & Sitko, J. (2007). Total mercury and mercury species in birds and fish in aquatic ecosystem in the Czech Republic. Environmental Pollution, 145, 185–194. doi:10.1016/j.envpol.2006.03.027.

    Article  CAS  Google Scholar 

  • Jagoe, C., Chesser, R., Smith, M., Lomakin, M., Lingenfelser, S., & Dallas, C. (1997). Levels of cesium, mercury and lead in fish, and cesium in pond sediments inan inhabited region of the Ukraine near Chernobyl. Environmental Pollution, 98, 223–232. doi:10.1016/S0269-7491(97)00135-8.

    Article  CAS  Google Scholar 

  • Jeffrey, K. M., Castro, M., & Kenneth, R. M. (2006). Mercury in fish from two Nicaraguan lakes: a recommendation for increased monitoring of fish for international commerce. Environmental Pollution, 141, 513–518. doi:10.1016/j.envpol.2005.08.062.

    Article  Google Scholar 

  • Kojadinovic, J., Potier, M., Le Corre, M., Richard, P. C., & Bustamante, P. (2006). Mercury content in commercial pelagic fish and its risk assessment in the Western Indian Ocean. The Science of the Total Environment, 366, 688–700. doi:10.1016/j.scitotenv.2006.02.006.

    Article  CAS  Google Scholar 

  • Kwaansa-Ansah, E. E., Agorku, S. E., & Nriagu, J. O. (2011). Levels of total mercury in different fish species and sediments from the upper Volta Basin at Yeji in Ghana. Bull Environ Contam Toxicol, 86(4), 406–9. doi:10.1007/s00128-011-0214-2.

    Article  CAS  Google Scholar 

  • Linde, A. R., Sanchez-Galan, S., Izquierdo, J. I., Arribas, P., Maranon, E., & Garcya-Vazquez, E. (1998). Brown Trout as biomonitor of heavy metal pollution: effect of age on the reliability of the assessment. Ecotoxicol Saf, 40, 120–125. doi:10.1006/eesa.1998.1652.

    Article  CAS  Google Scholar 

  • Linnik, P. M., & Zubenko, I. B. (2000). Role of bottom sediments in the secondary pollution of aquatic environments by heavy-metal compounds. Lakes Reserv: Res Manag, 5, 11–21. doi:10.1046/j.1440-1770.2000.00094.x.

    Article  Google Scholar 

  • Malik, N., Biswas, A. K., Qureshi, T. A., Borana, K., & Virha, R. (2010). Bioaccumulation of heavy metals in fish tissues of a freshwater lake of Bhopal. Environmental Monitoring and Assessment, 160, 267–276. doi:10.1007/s10661-008-0693-8.

    Article  CAS  Google Scholar 

  • Mohammadi, M., Askary Sari, A., & Khodadadi, M. (2011). Determination of heavy metals in two barbs, Barbus grypus and Barbus xanthopterus in Karoon and Dez Rivers, Khoozesan, Iran. Bulletin of Environmental Contamination and Toxicology, 87, 158–162. doi:10.1007/s00128-011-0302-3.

    Article  CAS  Google Scholar 

  • Raissy, M., & Ansari, M. (2014). Health risk assessment of mercury and arsenic associated with consumption of fish from the Persian Gulf. Environmental Monitoring and Assessment, 186, 1235–1240. doi:10.1007/s10661-013-3452-4.

    Article  CAS  Google Scholar 

  • Rice, G., Swartout, J., Mahaffey, K., & Schoeny, R. (2000). Derivation of US EPA’s oral reference dose (RFD) for methylmercury. Drug and Chemical Toxicology, 23, 41–54. doi:10.1081/DCT-100100101.

    Article  CAS  Google Scholar 

  • Romeo, M., Siau, Y., Sidoumou, Z., & Gnassia-Barelli, M. (1999). Heavy metal distribution in different fish species from the Mauritania coast. The Science of the Total Environment, 232, 169–175. doi:10.1016/S0048-9697(99)00099-6.

    Article  CAS  Google Scholar 

  • Scerbo, R., Ristori, T., Stefanini, B., Ranieri, S. D., & Barghigioni, C. (2005). Mercury assessment and evaluation of its impact on fish in the Cecina river basin (Tuscany, Italy). Environmental Pollution, 135, 179–186. doi:10.1016/j.envpol.2004.07.027.

    Article  CAS  Google Scholar 

  • Schneider, JC, Laarman PW, Gowing H (2000) Age and growth methods and state averages. In: SchneiderJC (eds.) Manual of fisheries survey methods II: with periodic updates. Ann Arbor: Michigan Department of Natural Resources, Fisheries Special Report 25.

  • Tabatabaie, T., Ghomi, M. R., Amiri, F., & Zamani-Ahmadmahmoodi, R. (2011). Comparative study of mercury accumulation in two fish species, (Cyprinuscarpioand Sanderlucioperca) from Anzali and Gomishan Wetlands in the Southern Coast of the Caspian Sea. Bulletin of Environmental Contamination and Toxicology, 87, 674–677. doi:10.1007/s00128-011-0413-x.

    Article  CAS  Google Scholar 

  • USEPA (1989). Risk assessment guidance for superfund: human health evaluation manual (part A), Interim Final, December.

  • USEPA (United States Environmental Protection Agency (2000). Risk assessment and fish consumption limits. In: Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, vol 2, 3rd ed.

  • Wiener, J. G., Bodaly, R. A., Brown, S. S., Lucotte, M., Newman, M. C., Porcella, D. B., Reash, R. J., & Swain, E. B. (2007). Monitoring and evaluating trends in methylmercury accumulation in aquatic biota. In R. Mason, M. W. Murray, R. Reash, & T. Saltman (Eds.), Ecosystem responses to mercury contamination: indicators of change (pp. 47–87). New York: Society of Environmental Toxicology and Chemistry (SETAC) North America Workshop on Mercury Monitoring and Assessment, CRC.

    Google Scholar 

  • World Health Organization (WHO) (1990). Methylmercury (EnvironmentalHealthCriteriaNo. 101). Geneva.

Download references

Acknowledgments

Special thanks are due to Mr. Mohammad Amini for lab assistance. We would also like to thank an anonymous native English speaker for helpful comments on the manuscript. This work is supported by the Ministry of Science, Research and Technology of Iran.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

For this type of study, formal consent is not required. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasool Zamani-Ahmadmahmoodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asefi, M., Zamani-Ahmadmahmoodi, R. Mercury concentrations and health risk assessment for two fish species, Barbus grypus and Barbus luteus, from the Maroon River, Khuzestan Province, Iran. Environ Monit Assess 187, 653 (2015). https://doi.org/10.1007/s10661-015-4845-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4845-3

Keywords

Navigation