Advertisement

Contamination of soil, medicinal, and fodder plants with lead and cadmium present in mine-affected areas, Northern Pakistan

  • Javed Nawab
  • Sardar Khan
  • Mohammad Tahir Shah
  • Zahir Qamar
  • Islamud Din
  • Qaisar Mahmood
  • Nayab Gul
  • Qing Huang
Article

Abstract

This study aimed to investigate the lead (Pb) and cadmium (Cd) concentrations in the soil and plants (medicinal and fodder) grown in chromite mining-affected areas, Northern Pakistan. Soil and plant samples were collected and analyzed for Pb and Cd concentrations using atomic absorption spectrometer. Soil pollution load indices (PLIs) were greater than 2 for both Cd and Pb, indicating high level of contamination in the study area. Furthermore, Cd concentrations in the soil surrounding the mining sites exceeded the maximum allowable limit (MAL) (0.6 mg kg−1), while the concentrations of Pb were lower than the MAL (350 mg kg−1) set by State Environmental Protection Administration (SEPA) for agriculture soil. The concentrations of Cd and Pb were significantly higher (P < 0.001) in the soil of the mining-contaminated sites as compared to the reference site, which can be attributed to the dispersion of toxic heavy metals, present in the bed rocks and waste of the mines. The concentrations of Pb and Cd in majority of medicinal and fodder plant species grown in surrounding areas of mines were higher than their MALs set by World Health Organization/Food Agriculture Organization (WHO/FAO) for herbal (10 and 0.3 mg kg−1, respectively) and edible (0.3 and 0.2 mg kg−1, respectively) plants. The high concentrations of Cd and Pb may cause contamination of the food chain and health risk.

Keywords

Medicinal Bioaccumulation Concentration Health risk Fodder Chromite mining 

Notes

Acknowledgments

The financial assistance was provided by the Higher Education Commission Pakistan in the form of Ph.D indigenous scholarship, University of Peshawar, Pakistan and funded by the Chinese Academy of Sciences Key Deployment Project (Project No. KZZD-EW-16-02). Mr. Javed Nawab thanks Chairman and Executive Director Environmental Protection Society Saidu Sharif, Swat for facilitating the field work.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abbasi, A. M., Khan, M. A., Ahmed, M., & Zafar, M. (2010a). Herbal medicines used to cure various ailments by the inhabitants of Abbottabad district, North West Frontier Province, Pakistan. Indian Journal of Traditional Knowledge, 9, 175–183.Google Scholar
  2. Abbasi, M. A., Khan, A. M., Mushtaq, A., Qureshi, R., Arshad, M., Jahan, S., Zafari, M., & Sultana, S. (2010b). Ethnobotaincal study of wound healing herbs among the tribal communities in Northern Himalaya ranges district Abbottabad, Pakistan. Pakistan Journal Botany, 6, 3747–3753.Google Scholar
  3. Ahmad, F., Khan M. A., Ahmad, M., Zafar, M., Mahmood, T., Jabeen, A., Marwat, S. K. (2010) Ethno-medicinal uses of grasses in salt range region of Northern Pakistan. Journal of Medicinal Plants Research, 4, 362–368.Google Scholar
  4. Ahmad, I., Ibrar, M., Barkatullah, & Ali, N. (2011). Ethno-botanical Study of Tehsil Kabal, Swat istrict, KPK, Pakistan. Journal of Botany. doi: 10.1155/2011/368572.
  5. Akhtar, N., Rashid, A., Murad, W., & Bergmeier, E. (2013). Diversity and use of ethno-medicinal plants in the region of Swat, North Pakistan. Journal Ethnobiology Ethnomedecine, 9, 25. doi: 10.1186/1746-4269-9-25.
  6. Arceusz, A., Radecka, I., & Wesolowski, M. (2010). Identification of diversity in elements content in medicinal plants belonging to different plant families. Food Chemistry, 120, 52–58.CrossRefGoogle Scholar
  7. Bako, S. P., Bakfur, M. J., John, I., & Bala, E. I. (2005). Ethnomedicinal and phytochemical profile of some savanna plant species in Nigeria. International Journal of Botany, 1, 147–150.CrossRefGoogle Scholar
  8. Baye, H., & Hymete, A. (2010). Lead and cadmium accumulation in medicinal plants collected from environmentally different sites. Bulletin of Environmental Contamination and Toxicology, 84, 197–201.CrossRefGoogle Scholar
  9. Baye, H., & Hymete, A. (2013). Levels of heavy metals in common medicinal plants collected from environmentally different sites. Middle East Journal of Scientific Research, 13, 938–943.Google Scholar
  10. Cao, H., Jiang, Y., Jianjiang, C., Zhang, H., Huang, W., Li, L., & Zhang, W. (2009). Arsenic accumulation in (Scutellaria baicalensis Georgi) and its effects on plant growth and pharmaceutical components. Journal of Hazardous Material, 171, 508–513.CrossRefGoogle Scholar
  11. Carrington, C. D., & Bolger, P. M. (1992). An assessment the hazards lead in food. Regulatory Toxicology and Pharmacology, 16, 265–272.CrossRefGoogle Scholar
  12. CCREM. (1995). CCREM (Canadian Council of Resource and Environment Ministers). Ottawa: Canadian Water Quiality Guidelines.Google Scholar
  13. Chamannejadian, A., Moezzi, A. A., Sayyad, G., Jahangiri, A., & Jafarnejadi, A. (2011). Spatial distribution of lead in calcareous soils and rice seeds of Khuzestan, Iran. Malaysian Journal of Soil Science, 15, 115–125.Google Scholar
  14. Dai, H. P., Jia, G. L., Wei, A. Z., Feng, S. J., Yang, T. X., & Song, H. (2011). Phytoremediation with transgenic poplar. Journal of Food, Agriculture and Environment, 9, 710–713.Google Scholar
  15. Dai, H. P., Shan, C. J., Lu, C., Jia, G. L., Wei, A. Z., & Sa, W. Q. (2012). Response of antioxidant enzymes in (Populus canescens) under cadmium stress. Pakistan Journal of Botany, 44, 1943–1949.Google Scholar
  16. Ebrahim, A. M., Eltayeb, M. H., Khalid, H., Mohamed, H., Abdalla, W., Grill, P., & Michalke, B. (2012). Study on selected trace elements and heavy metals in some popular medicinal plants from Sudan. Journal of Natural Medicine, 66, 671–679.CrossRefGoogle Scholar
  17. FAO (1992). Status of cadmium, lead, cobalt and selenium in soils and plants of thirty countries. Soils Bulletin, 65.Google Scholar
  18. Fayiga, A. O., Ma, L. Q., Cao, X., & Rathinasabapathi, B. (2004). Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pterisvittata L. Environmental Pollution, 132, 289–96.CrossRefGoogle Scholar
  19. Godt, J., Scheidig, F., Grosse-Siestrup, C., Esche, V., Brandenburg, P., Reich, A., & Groneberg, D. A. (2006). The toxicity of cadmium resulting hazards for human health. Journal of Occupational Medicine and Toxicology, 1, 22.CrossRefGoogle Scholar
  20. Gupta, S., Nayek, S., Saha, R. H., & Satpati, S. (2008). Assessment of heavy metal accumulation in macrophyte, agricultural soil and crop plants adjacent to discharge zone of sponge iron factory. Environmental Geology, 55, 731–739.CrossRefGoogle Scholar
  21. Haq, F., Ahmad, H., & Alam, M. (2011). Traditional uses of medicinal plants of Nandiar Khuwarr catchment (District Battagram), Pakistan. Journal of Medicinal Plants Research, 5, 39–48.Google Scholar
  22. Hashim, S., Bakht, T., Marwat, K. B., & Jan, A. (2014). Medicinal properties, phytochemistry and pharmacology of TribulusTerestris (Zygophyllaceae). Pakistan Journal of Botany, 46, 399–404.Google Scholar
  23. Holmgren, G. G., Meyer, M. W., Chaney, R. L., & Daniels, R. B. (1993). Cadmium, lead, copper, and nickel in agricultural soils of the United States of America. Journal of Environmental Quality, 22, 335–348.CrossRefGoogle Scholar
  24. Hussain, I., Ullah, R., Khurram, M., Ullah, N., Baseer, A., Khan, F. A., Khan, N., Khattak, M. R., Zahoor, M., & Khan, J. (2011). Heavy metals and inorganic constituents in medicinal plants of selected districts of Khyber Pakhtoonkhwa, Pakistan. African Journal of Biotechnology, 42, 8517–8522.Google Scholar
  25. Islam, M., Ahmad, H., Rashid, A., Razzaq, A., Akhtar, N., & Khan, I. (2006). Weeds and medicinal plants of Shawar valley, District Swat. Pakistan Journal of Weed Science Research, 12, 83–88.Google Scholar
  26. Jung, M. C. (2008). Heavy metal concentrations in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu-W mine. Sensors (Basel), 8, 2413–23.CrossRefGoogle Scholar
  27. Khan, S., & Cao, Q. (2012). Human health risk due to consumption of vegetables contaminated with carcinogenic polycyclic aromatic hydrocarbons. Journal of Soils Sediments, 12, 178–184.CrossRefGoogle Scholar
  28. Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152, 686–692.CrossRefGoogle Scholar
  29. Khan, K., Lu, Y., Khan, H., Ishtiaq, M., Khan, S., Waqas, M., Wei, L., & Wang, T. (2013a). Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food and Chemical Toxicology, 58, 449–458.CrossRefGoogle Scholar
  30. Khan, K., Lu, Y., Khan, H., Zakir, S., Ihsanullah, Khan, S., Khan, A. A., Wei, L., & Wang, T. (2013b). Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan. Journal of Environmental Sciences, 25, 2003–2013.CrossRefGoogle Scholar
  31. Khan, K., Lu, Y., Khan, H., Ihsanullah, Khan, S., Nawab, J., & Shamshad, I. (2014). Evaluation of toxicological risk of foodstuffs contaminated with heavy metals in Swat, Pakistan. Ecotoxicology and Environmental Safety, 108, 224–232.CrossRefGoogle Scholar
  32. Khan, S., Waqas, M., Ding, F., Shamshad, I., Arp, H. P. H., & Li, G. (2015). The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L). Journal of Hazardous Materials, 300, 243–253.CrossRefGoogle Scholar
  33. Kulhari, A., Sheorayan, A., Somvir Bajar, S., Susheel Sarkar, S., Chaudhury, A., Rajwant, K., & Kalia, R. K. (2013). Investigation of heavy metals in frequently utilized medicinal plants collected from environmentally diverse locations of north western India. Springer Plus, 2, 676.CrossRefGoogle Scholar
  34. Kunle, O. F., Egharevba, H. O., & Ahmadu, P. O. (2012). Standardization of herbal medicines—a review. International Journal of Biodiversity and Conservation, 4, 101–112.CrossRefGoogle Scholar
  35. Liang, J., Wang, Q. Q., & Huang, B. L. (2004). Concentration of hazardous heavy metals in environmental samples collected in Xiaman, China as determined by vapor generation non-dispersive atomic fluorescence spectrometry. Analytical Sciences, 20, 85.CrossRefGoogle Scholar
  36. Macalalad, E., Bayoran, R., Ebarvia, B., & Rubeska, I. (1988). A concise analytical scheme for 16 trace elements in geochemical exploration samples using exclusively AAS. Journal of Geochemical Exploration, 30, 167–177.CrossRefGoogle Scholar
  37. Malik, F., Hussain, S., Mirza, T., Hameed, A., Ahmad, S., Riaz, H., Shah, P. A., & Usmanghani, K. (2011). Screening for antimicrobial activity of thirty-three medicinal plants used in the traditional system of medicine in Pakistan. Journal of Medicinal Plants Research, 5, 3052–3060.Google Scholar
  38. Marsden, P. A. (2003). Increased body lead burden cause or consequence of chronic renal insufficiency. New England Journal of Medicine, 348, 345–347.CrossRefGoogle Scholar
  39. Marwat, S. K., Khan, M. A., Ahmad, M., Zafar, M., & Rehman, F. (2008). Ethnophytomedicine for treatment of various diseases in DI Khan District. Sarhad Journal of Agriculture, 24.Google Scholar
  40. Mmolawa, K. B., Likuku, A. S., Gaboutloeloe,G. K. (2010). Reconnaissance 475 of heavy metal distribution and enrichment around Botswana. 5th International Conference of Environmental Science and Technology, Houston, Texas, USA.Google Scholar
  41. Mor, F. (2005). Cadmium and lead in livestock feed and cattle manure from four agricultural areas of Bursa, Turkey. Toxicological and Environmental Chemistry, 87, 329–334.CrossRefGoogle Scholar
  42. Muhammad, S., Shah, M. T., & Khan, S. (2011). Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchemical Journal, 98, 334–43.CrossRefGoogle Scholar
  43. Murad, W., Azizullah, A., Adnan, M., Tariq, A., Khan, K. U., Waheed, S., & Ahmad, A. (2010). Ethnobotanical assessment of plant resources of Banda Daud Shah, District Karak, Pakistan. Journal of Ethnobiology Ethnomedicine, 9, 77.CrossRefGoogle Scholar
  44. Mushtaq, A., Muhammad, Z., Ajab, K. M., Shazia, S., Mujtaba, S. G., & Jan, G. (2012). Ethno medicinal investigation phytomedicines among the local communities of arid area Pakistan. Indian Journal of Traditional Knowledge, 11, 436–446.Google Scholar
  45. National Research Council Canada (1978). Effect of lead in the environment.Google Scholar
  46. Nawab, J., Khan, S., Shah, M. T., Khan, K., Huang Q., & Ali, R. (2015) Quantification of heavy metals in mining affected soil and their bioaccumulation in native plant species. International Journal of Phytoremediation, 17, 801–813.Google Scholar
  47. Nouri, J., Lorestani, B., Yousefi, N., Khorasani, N., Hasani, A. H., & Seif, F. (2011). Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine Hamadan, Iran. Environmental Earth Sciences, 62, 639–44.CrossRefGoogle Scholar
  48. Ogundiran, M. B., Ogundele, D. T., Afolayan, P. G., & Osibanjo, O. (2012). Heavy metals levels in forage grasses, leachate and lactating cows reared around lead slag dumpsites in Nigeria. International Journal of Environmental Research, 6, 695–702.Google Scholar
  49. Oskarson, A. L., Jorham, L., Sindberg, J., Nilson, N., & Abanus, L. (1992). Toxicological implication of grazing on forages in Dareta village Zamfara, Nigeria. Science of Total Environment, 111, 83–94.CrossRefGoogle Scholar
  50. Rozso, K., Varhegyi, J., Mocsenyi, A. R., & Fugli, K. (2003). Lead content of the forages and the effect of lead exposure on ruminants. Veterinary Bulliten, 73, 510–510.Google Scholar
  51. Searle, M. P., & Khan, M. A. (1996). Geological map of North Pakistan and adjacent area of northern Ladakh and western Tibet.Google Scholar
  52. SEPA. (1995). Environmental quality standard for soils. China: State Environmental Protection Administration.Google Scholar
  53. Shah, M. T., & Tariq, S. (2007).  Environmental geochemistry of the soils of Peshawar Basin N.W.F.P. Pakistan. Journal of Chemical Society of Pakistan, 29, 438–445.Google Scholar
  54. Shah, B. A., Shah, A. V., & Singh, R. R. (2009). Sorption isotherms and kinetics of chromium uptake from wastewater using natural sorbent material. International Journal of Environmental Science and Technology, 6, 77–90.CrossRefGoogle Scholar
  55. Sharma, K. R., Agrawal, M., & Marshall, M. F. (2009). Heavy metals in vegetables collected from production and market sites of a tropical urban area of India. Food Chemical Toxicology, 47, 583–591.CrossRefGoogle Scholar
  56. Sher, H., Alyemeni, M. N., Wijaya, L., & Shah, A. J. (2010). Ethno pharmaceutically important medicinal plants and its utilization in traditional system of medicine, observation from the Northern Parts of Pakistan. Journal of Medicinal Plants Research, 4, 1853–1864.Google Scholar
  57. Swarup, D., Naresh, R., Varshney, V. P., Balagangatharathilagar, M., Kumar, P., Nandi, D., & Patra, R. C. (2007). Changes in plasma hormones profile and liver function in cows naturally exposed to lead and cadmium around different industrial areas. Research in Veterinary Science, 82, 16–21.CrossRefGoogle Scholar
  58. Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessments of heavy-metal levels in estuaries and formation of a pollution index. Helgol Meeresunters, 33, 566–575.CrossRefGoogle Scholar
  59. US- EPA, (1993). Lead Action News, Lead Action News Vol 1.Google Scholar
  60. Wang, K. S., Huang, L. C., Lee, H. S., Chen, P. Y., & Chang, S. H. (2008). Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: effects of cadmium speciation. Chemosphere, 72, 666–672.CrossRefGoogle Scholar
  61. Waqas, M., Li, G., Khan, S., Shamshad, I., Reid, B. J., Qamar, Z., & Chao, C. (2015). Application of sewage sludge and sewage sludge biochar to reduce polycyclic aromatic hydrocarbons (PAH) and potentially toxic elements (PTE) accumulation in tomato. Environmental Science and Pollution Research, 22, 7071–7081.CrossRefGoogle Scholar
  62. Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94, 99–107.CrossRefGoogle Scholar
  63. WHO, (1992). Cadmium environmental health criteria geneva. Vol.134.Google Scholar
  64. WHO. (2007). Guidelines for assessing quality of herbal medicines with reference to contaminants and residues. Geneva: World Health Organization.Google Scholar
  65. WHO/FAO (2007). Joint FAO/WHO Food Standard Programme Codex AlimentariusCommission 13th Session. Report of the Thirty eight Session of the Codex Committee on Food Hygiene, Houston, United States of America, ALINORM 07/30/13.Google Scholar
  66. Zhao, X., Liu, J., Xia, X., Chu, J., Wei, Y., Shi, S., Chang, E., Yin, W., & Jiang, Z. (2014). The evaluation of heavy metal accumulation and application of a comprehensive bio-concentration index for woody species on contaminated sites in Hunan, China. Environmental Science and Pollution Research, 21, 5076–5085.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Javed Nawab
    • 1
    • 2
    • 3
  • Sardar Khan
    • 1
    • 2
  • Mohammad Tahir Shah
    • 4
  • Zahir Qamar
    • 2
  • Islamud Din
    • 5
  • Qaisar Mahmood
    • 6
  • Nayab Gul
    • 2
  • Qing Huang
    • 1
  1. 1.Key Laboratory of Urban Environment and HealthInstitute of Urban Environment, Chinese Academy of SciencesXiamenChina
  2. 2.Department of Environmental SciencesUniversity of PeshawarPeshawarPakistan
  3. 3.Department of Environmental and Conservation SciencesUniversity of SwatSwatPakistan
  4. 4.National Center of Excellence in GeologyUniversity of PeshawarPeshawarPakistan
  5. 5.Department of Environmental SciencesIslamic International UniversityIslamabadPakistan
  6. 6.Department of Environmental Sciences COMSATSAbottabadPakistan

Personalised recommendations