Skip to main content

Advertisement

Log in

A comparison between index of entropy and catastrophe theory methods for mapping groundwater potential in an arid region

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, index of entropy and catastrophe theory methods were used for demarcating groundwater potential in an arid region using weighted linear combination techniques in geographical information system (GIS) environment. A case study from Badra area in the eastern part of central of Iraq was analyzed and discussed. Six factors believed to have influence on groundwater occurrence namely elevation, slope, aquifer transmissivity and storativity, soil, and distance to fault were prepared as raster thematic layers to facility integration into GIS environment. The factors were chosen based on the availability of data and local conditions of the study area. Both techniques were used for computing weights and assigning ranks vital for applying weighted linear combination approach. The results of application of both modes indicated that the most influential groundwater occurrence factors were slope and elevation. The other factors have relatively smaller values of weights implying that these factors have a minor role in groundwater occurrence conditions. The groundwater potential index (GPI) values for both models were classified using natural break classification scheme into five categories: very low, low, moderate, high, and very high. For validation of generated GPI, the relative operating characteristic (ROC) curves were used. According to the obtained area under the curve, the catastrophe model with 78 % prediction accuracy was found to perform better than entropy model with 77 % prediction accuracy. The overall results indicated that both models have good capability for predicting groundwater potential zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahmed, K., Shahid, S., bin Harun, S., Ismail, T., Nawaz, N., & Shamsudin, S. (2014). Assessment of groundwater potential zones in an arid region based on catastrophe theory. Earth Sciences Information. doi:10.1007/s12145-014-0173-3.

    Google Scholar 

  • Al-Abadi, A. M. (2015). Modeling of groundwater productivity in northeastern Wasit Governorate, Iraq by using frequency ratio and Shannon’s entropy models. Applied Water Science. doi:10.1007/s13201-015-0283-1.

    Google Scholar 

  • Al-Sayab, A., Al-Ansari, N., Al-Rawi, D., Al-Jassim, J., Al-Omari, F., & Al-Shaikh, Z. (1982). Geology of Iraq. Iraq: Mosul University (In Arabic).

    Google Scholar 

  • Al-Shammary, SH. (2006). Hydrogeology of Galal Basin-Wasit east, Iraq. Unpublished Ph D thesis, Baghdad.

  • Aniya, M. (1985). Landslide-susceptibility mapping in the Amahata river basin, Japan. Annual Association American Geographers, 75, 102–114.

    Article  Google Scholar 

  • Babiker, I., Mohamed, M., Hiyama, T., & Kato, K. (2005). A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. The Science of the Total Environment, 345, 127–140.

    Article  CAS  Google Scholar 

  • Bednarik, M., Magulova, B., Matys, M., & Marschalko, M. (2010). Landslide susceptibility assessment of the Kral Ovany–Liptovsky’ Mikula’sˇ railway case study. Physics Chemistry Earth Parts A/B/C, 35, 162–171.

    Article  Google Scholar 

  • Bednarik, M., Yilmaz, I., & Marschalko, M. (2012). Landslide hazard and risk assessment: a case study from the Hlohovec–Sered’landslide area in south-west Slovakia. Natural Hazards, 64, 547–575.

    Article  Google Scholar 

  • Chen, C. T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and System, 114, 1–9.

    Article  Google Scholar 

  • Chen, Y. F., Yin, C. F., & Lu, G. F. (2006). The catastrophic model of water bloom: a case study on Lake Chaohu. Acta Ecologica Sinica, 26, 878–883.

    Google Scholar 

  • Ching, H. S., Ying-Hua, C. L., Yin, L. (1996). Evaluating a weapon system using catastrophe series based on fuzzy scales. In: Fuzzy systems symposium, soft computing in intelligent systems and information processing, proceedings of the 1996 Asian, 11–14. pp 212–217. doi:10.1109/afss.1996.583593.

  • Chowdary, V., Chakraborthy, D., Jeyaram, A., Murthy, Y. K., Sharma, J., & Dadhwal, V. (2013). Multi-criteria decision making approach for watershed prioritization using analytic hierarchy process technique and GIS. Water Resources Management, 27, 1–17.

    Article  Google Scholar 

  • Chung, C. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30, 451–472.

    Article  Google Scholar 

  • Constantin, M., Bednarik, M., Jurchescu, M. C., & Vlaicu, M. (2011). Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environmental Earth Science, 63, 397–406.

    Article  Google Scholar 

  • Corsini, A., Cervi, F., & Ronchetti, F. (2009). Weight of evidence and artificial neural networks for potential groundwater mapping: an application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology, 111, 79–87. doi:10.1016/j.geomorph.2008.03.015.

    Article  Google Scholar 

  • Egan, J. P. (1975). Signal detection theory and ROC analysis. New York: Academic Press.

    Google Scholar 

  • Elmahdy, S. I., & Mohamed, M. M. (2014). Probabilistic frequency ratio model for groundwater potential mapping in Al Jaww plain, UAE. Arabian Journal of Geosciences. doi:10.1007/s12517-014-1327-9.

    Google Scholar 

  • Ghorbani, M. A., Khatibi, R., Sivakumar, B., & Cobb, L. (2010). Study of discontinuities in hydrological data using catastrophe theory. Hydrological Sciences Journal, 55, 1137–1151.

    Article  Google Scholar 

  • Hui, Q. (2008). Niche, factor interaction and business evolution—the enterprise niche research of the growth business. Hangzhou: Zhejiang University Press.

    Google Scholar 

  • Ihara, S. (1993). Information theory for continuous systems. USA: World Scientific Pub Co Inc.

    Book  Google Scholar 

  • Jaafari, A., Najafi, A., Pourghasemi, H. R., Rezaeian, J., & Sattarian, A. (2013). GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. International Journal of Environmental Science and Technology, 11, 909–926. doi:10.1007/s13762-013-0464-0.

    Article  Google Scholar 

  • Jassim, S. Z., & Goff, J. C. (2006). Geology of Iraq. Dolin: Prague and Moravian Museum. 431p.

    Google Scholar 

  • Jha, M. K., Chowdary, V. M., & Chowdhury, A. (2010). Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeology Journal, 18, 1713–1728. doi:10.1007/s10040-010-0631-z.

    Article  Google Scholar 

  • Kam, J. K. (1992). Are chaos and catastrophe theories relevant to environmental sciences? Journal of Environmental Sciences, 4, 39–42.

    Google Scholar 

  • Lee, S., Kim, Y. S., & Oh, H. J. (2012). Application of a weight-of-evidence method and GIS to regional groundwater productivity potential mapping. Journal of Environmental Management, 96, 91–105. doi:10.1016/j.jenvman.2011.09.016.

  • Li, P.-Y., Hui, Q., & Jian-Hua, W. U. (2010). Groundwater quality assessment based on improved quality index in Pengyang County, Ningxia, northeast China. Journal of Chemistry, 7, 209–216.

    Google Scholar 

  • Lodwik, W. A., Monson, W., & Svoboda, L. (1990). Attribute error and sensitivity analysis of maps operation in geographical information systems–suitability analysis. International Journal of Geographical Information System, 4, 413–428.

    Article  Google Scholar 

  • Machiwal, D., Madan, K. J., & Bimal, C. M. (2010). Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water Resources Management, 25, 1359–1386.

    Article  Google Scholar 

  • Majandang, J., & Sarapirome, S. (2012). Groundwater vulnerability assessment and sensitivity analysis in Nong Rua, Khon Kaen, Thailand, using a GIS-based SINTACS model. Environmental Earth Science, 68, 2025–2039. doi:10.1007/s12665-012-1890-x.

    Article  Google Scholar 

  • Malczewski, J. (1999). GIS and multicriteria decision analysis. New York: Wiley.

    Google Scholar 

  • Manap, M. A., Sulaiman, W. N., Ramli, M. F., Pradhan, B., & Surip, N. (2011). A knowledge-driven GIS modeling technique for groundwater potential mapping at the Upper Langat Basin, Malaysia. Arabian Journal of Geosciences, 6, 1621–1637. doi:10.1007/s12517-011-0469-2.

    Article  Google Scholar 

  • Moghaddam, D. D., Rezaei, M., Pourghasemi, H. R., Pourtaghie, Z. S., & Pradhan, B. (2013). Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan Watershed, Iraq. Arabian Journal of Geosciences. doi:10.1007/s12517-013-1161-5.

    Google Scholar 

  • Naghibi, S. A., Pourghasemi, H. R., Pourtaghi, Z. S., & Rezaei, A. (2014). Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iraq. Earth Sciences Information. doi:10.1007/s12145-014-0145-7.

    Google Scholar 

  • Nampak, H., Pradhan, B., & Manap, M. A. (2014). Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Journal of Hydrology, 513, 283–300.

    Article  Google Scholar 

  • Napolitano, P., Fabbri, AG. (1996). Single parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. In: Proceedings of the Vienna conference on HydroGIS 96: application of geographic information system in hydrology and water resources management. IAHS Pub. No. 235. pp 559–566.

  • Oh, H. J., Kim, Y. S., Choi, J. K., Park, E., & Lee, S. (2011). GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. Journal of Hydrology, 399, 158–172.

    Article  Google Scholar 

  • Ozdemir, A. (2011a). Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). Journal of Hydrology, 405, 123–136. doi:10.1016/j.jhydrol.2011.05.015.

    Article  Google Scholar 

  • Ozdemir, A. (2011b). GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. Journal of Hydrology, 411, 290–308.

    Article  Google Scholar 

  • Pandey, VP., Kazama F. (2012). Groundwater storage potential in the Kathmandu Valley’s shallow and deep aquifers. In: Shrestha, S., Pradhanand, D,. Pandey, VP. (Eds.) Kathmandu valley groundwater outlook. Publisher: AIT/SEN/CREEW/ICRE-UY. pp 31–38.

  • Pandey, V. P., Shrestha, S., & Kazama, F. (2013). A GIS-based methodology to delineate potential areas for groundwater development: a case study from Kathmandu Valley, Nepal. Applied Water Science, 3(2), 453–465.

    Article  Google Scholar 

  • Parsons, R. M. (1956). Ground-water resources of Iraq, Khanaqin-Jassan area, vol. 1. Development board. Baghdad: Ministry of Development Government of Iraq.

    Google Scholar 

  • Pourghasemi, H., Pradhan, B., Gokceoglu, C., & Moezzi, K. D. (2013). A comparative assessment of prediction capabilities of Dempster-Shafer and weights-of-evidence models in landslide susceptibility mapping using GIS. Geomatics, Natural Hazards and Risk, 4, 93–118.

    Article  Google Scholar 

  • Pourtaghi, Z. S., & Pourghasemi, H. R. (2014). GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeology Journal, 22, 643–662. doi:10.1007/s10040-013-1089-6.

    Article  Google Scholar 

  • Prasad, R. K., Mondal, N. C., Banerjee, P., Nandakumar, M. V., & Singh, V. S. (2008). Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology, 55, 467–475.

    Article  Google Scholar 

  • Satty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  • Shahid, S., Nath, S. K., & Roy, J. (2000). Groundwater potential modeling in a GIS. International Journal of Remote Sensing, 21, 1919–1924.

    Article  Google Scholar 

  • Shahid, S., Nath, S. K., & Kamal, A. S. (2002). GIS integration of remote sensing and topographic data using fuzzy logic for ground water assessment in Midnapur District, India. Geocarto International, 17, 69–74. doi:10.1080/10106040208.

    Article  Google Scholar 

  • Shi, Y., & Jin, F. (2009). Landslide stability analysis based on generalized information entropy. International Conference on Environmental Science Information Applied Technology, 2, 83–85.

    Google Scholar 

  • Singhal, B. B., & Gupta, R. P. (1999). Applied hydrogeology of fractured rocks. Netherlands: Springer. 429p.

    Book  Google Scholar 

  • USDA—United State Department of Agriculture (1986) Urban hydrology for small watersheds, technical release No. 55, Washington DC.

  • Wang, W., Liu, S., Zhang, S., & Chen, J. (2011). Assessment of a model of pollution disaster in near-shore coastal waters based on catastrophe theory. Ecological Modelling, 222, 307–312.

    Article  CAS  Google Scholar 

  • Yang, F., Shao, D., Xiao, C., & Tan, X. (2012). Assessment of urban water security based on catastrophe theory. Water Science and Technology, 66, 487–493.

    Article  Google Scholar 

  • Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79, 251–266.

    Article  Google Scholar 

  • Zhang, T. J., Ren, S. X., Li, S. G., Zhang, T. C., & Xu, H. J. (2009) Application of the catastrophe progression method in predicting coal and gas outburst. Mining Science and Technology, 19(4), 430–434.

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa M. Al-Abadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Abadi, A.M., Shahid, S. A comparison between index of entropy and catastrophe theory methods for mapping groundwater potential in an arid region. Environ Monit Assess 187, 576 (2015). https://doi.org/10.1007/s10661-015-4801-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4801-2

Keywords

Navigation