Skip to main content

Geochemistry and magnetic measurements of suspended sediment in urban sewage water vis-à-vis quantification of heavy metal pollution in Ganga and Yamuna Rivers, India

Abstract

Sewage water is becoming a key source of heavy metal toxicity in large river systems worldwide and the two major Himalayan Rivers in India (Ganga and Yamuna) are severely affected. The high population density in the river banks combined with increased anthropogenic and industrial activities is contributing to the heavy metal pollution in these rivers. Geochemical data shows a significant increase in the concentration of all heavy metals (Pb, 48–86 ppm; Zn, 360–834 ppm; V, 45–101 ppm; Ni, 20–143 ppm; Cr, 79–266 ppm; Co, 8.62–22.12 ppm and Mn, 313–603 ppm) in sewage and mixed water (sewage and river water confluence site) samples due to increased effluent discharge from the catchment area. The ΣREE content of sewage water (129 ppm) is lower than the average mixed water samples (142 ppm). However, all the samples show similar REE pattern. The mass magnetic susceptibility (Xlf) values of suspended sediments (28 to 1000 × 10−8 m3 kg−1) indicate variable concentration of heavy metals. The Xlf values show faint positive correlation with their respective bulk heavy metal contents in a limited sample population. The present study comprising geochemical analysis and first magnetic measurement data of suspended sediments in water samples shows a strongly polluted nature of Ganga and Yamuna Rivers at Allahabad contrary to the previous report mainly caused by overtly polluted city sewage water.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., Coad, B., Mandrak, N., Balderas, S. C., Bussing, W., Stiassny, M. L. J., Skelton, P., Allen, G. R., Unmack, P., Naseka, A., Ng, R., Sindorf, N., Robertson, J., Armijo, E., Higgins, J. V., Heibel, T. J., Wikramanayake, E., Olson, D., López, H. L., Reis, R. E., Lundberg, J. G., Pérez, M. H. S., & Petry, P. (2008). Freshwater eco regions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience, 58, 403–414.

    Article  Google Scholar 

  • Ajmal, M. D., Khan, M. A., & Nomani, A. A. (1985). Distribution of heavy metals in plants and fish of the Yamuna river (India). Environmental Monitoring and Assessment, 5, 361–367.

    CAS  Article  Google Scholar 

  • Bau, M., & Dulski, P. (1996). Anthropogenic origin of positive gadolinium anomalies in river waters. Earth and Planetary Science Letters, 143, 245–255.

    CAS  Article  Google Scholar 

  • Bhargava, D. S. (2006). Revival of Mathura’s ailing Yamuna river. Environmentalist, 26, 111–122.

    Article  Google Scholar 

  • Bhattacharya, A., Dey, P., Gola, D., Mishra, A., Malik, A., & Patel, N. (2015). Assessment of Yamuna and associated drains used for irrigation in rural and peri-urban settings of Delhi NCR. Environmental Monitoring and Assessment, 187, 4146(1-13).

    Article  Google Scholar 

  • Birch, G., Taylor, S., & Matthai, C. (2001). Small-scale spatial and temporal variance in the concentration of heavy metals in the aquatic sediments: a review and some new concepts. Environmental Pollution, 113, 357–372.

    CAS  Article  Google Scholar 

  • Boran, M., & Altinok, I. (2010). A review of heavy metals in water, sediment and living organisms in the Blacksea. Turk. Journal of Fish Aquatic Science, 10, 565–572.

    Google Scholar 

  • Börnstein, L. (1986). Numerical data and functional relationships in science and technology, new series, II/16. Springer-Verlag, Heidelberg:Diamagnetic Susceptibility.

    Google Scholar 

  • Cazenave, J., Bacchetta, C., Rossi, A., Ale, A., Campana, M., & Parma, M. J. (2014). Deleterious effects of wastewater on the health status of fish: a field caging study. Ecological Indicator, 38, 104–112.

    CAS  Article  Google Scholar 

  • Chakarvorty, M., Pati, J. K., Patil, S. K., Shukla, S., Niyogi, A., & Saraf, A. K. (2014). Physical characterization, REE geochemistry and biomonitoring of dust-load accumulated during a protracted winter fog period from a north Indian city (Allahabad) and its implications. Environmental Monitoring and Assessment, 186, 2965–2978.

    CAS  Article  Google Scholar 

  • Chakrapani, G. J., & Subramanian, V. (1996). Fractionation of heavy metals and phosphorus in suspended sediments of the Yamuna river, India. Environmental Monitoring and Assessment, 43, 117–124.

    CAS  Article  Google Scholar 

  • Chakrapani, G. J. (2005). Major and trace element geochemistry in upper Ganga river in Himalayas, India. Environmental Geology, 48, 189–201.

    CAS  Article  Google Scholar 

  • Chaparro, M. A. E., Sinito, A. M., Ramasamy, V., Marinelli, C., Chaparro, M. A. E., Mullainathan, S., & Murugesan, S. (2008). Magnetic measurements and pollutants of sediments from Cauvery and Palaru river, India. Environmental Geology, 56, 425–437.

    CAS  Article  Google Scholar 

  • Chaparro, M. A. E., Chaparro, M. A. E., Rajkumar, P., Ramasamy, V., & Sinito, A. M. (2011). Magnetic parameters, trace elements and multi-variate statistical studies of river sediments from Southeastern India: a case study from the vellar river. Environmental Earth Science, 63, 297–310.

    CAS  Article  Google Scholar 

  • Chaparro, M. A. E., Suresh, G., Chaparro, M. A. E., Ramasamy, V., & Sinito, A. M. (2013). Magnetic studies and elemental analysis of river sediments: a case study from the Ponnaiyar River (Southeastern India). Environmental Earth Science, 70, 201–213.

    CAS  Article  Google Scholar 

  • Dalai, T. K., Rengarajan, R., & Patel, P. P. (2004). Sediment geochemistry of the Yamuna river system in the Himalaya: implications to weathering and transport. Geochemical Journal, 38, 441–453.

    CAS  Article  Google Scholar 

  • Das, S. (2011). Cleaning of the Ganga. Journal of the Geological Society of India, 78, 124–130.

    Article  Google Scholar 

  • Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z., Knowler, D. J., Lévêque, C., Naiman, R. J., Richard, A. H., Soto, D., Stiassny, M. L., & Sullivan, C. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society, 81, 163–182.

    Article  Google Scholar 

  • Elderfield, H., Upstill-Goddard, R., & Sholkovitz, E. R. (1990). The rare earth elements in rivers, estuaries and coastal seas and their significance to the composition of ocean waters. Geochimica et Cosmochimica Acta, 54, 971–991.

    CAS  Article  Google Scholar 

  • Förstner, U., & Müller, G. (1981). Concentrations of heavy metals and polycyclic aromatic hydrocarbons in river sediments: geochemical background, man’s influence and environmental impact. GeoJournal, 5, 417–432.

    Article  Google Scholar 

  • Gaillardet, J., Viers, J., & Dupré, B. (2004). Trace elements in river waters. In J. I. Drever (Ed.), Surface and ground water, weathering, and soils. Treatise on geochemistry (pp. 225–272). San Diego: Elsevier.

    Google Scholar 

  • Gromet, L. P., Dymek, R. F., Haskin, L. A., & Korotev, R. L. (1984). The North American shale composite; its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48, 2469–2482.

    CAS  Article  Google Scholar 

  • Gupta, A., Rai, D. K., Pandey, R. S., & Sharma, B. (2009). Analysis of some heavy metals in the riverine water sediments and fish from river Ganges at Allahabad. Environmental Monitoring and Assessment, 157, 449–458.

    CAS  Article  Google Scholar 

  • Gupta, S. K., Chabukdhara, M., Kumar, P., Singh, J., & Bux, F. (2014). Evaluation of ecological risk of metal contamination in river Gomti, India: a biomonitoring approach. Ecotoxicology and Environmental Safety, 110, 49–55.

    CAS  Article  Google Scholar 

  • Huang, F., Wang, X., Lou, L., Zhiqing, Z. D., & Jiaping, W. (2010). Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water Research, 44, 1562–1572.

    CAS  Article  Google Scholar 

  • Ingri, J., Andersson, P. S., Widerlund, A., Öhlander, B., Gustafsson, Ö., & Land, M. (2000). The Ce-anomaly in river suspended matter: an indicator of hydrogeochemical processes in a boreal catchment. Goldschmidt Abstract, 5, 540.

    Google Scholar 

  • IUCN (2010). IUCN Red List of Threatened Species. Version 010.1.www.iucnredlist.org.

  • Jackson, R. B., Carpenter, S. R., Dahm, C. N., McKnight, D. M., Naiman, R. J., Postel, S. L., & Running, S. W. (2001). Water in a changing world. Ecological Application, 11, 1027–1045.

    Article  Google Scholar 

  • Jain, C. K. (2002). A hydro-chemical study of a mountainous watershed: the Ganga, India. Water Research, 36, 1262–1274.

  • Kar, D., Sur, P., Mandal, S. K., Saha, T., & Kole, R. K. (2008). Assessment of heavy metal pollution in surface water. International Journal of Environmental Science and Technology, 5, 119–124.

    CAS  Article  Google Scholar 

  • Klaver, G., Verheu, M., Bakker, I., Giraud, E. P., & Négrel, P. (2014). Anthropogenic rare earth element in rivers: gadolinium and lanthanum. Partitioning between the dissolved and particulate phases in the Rhine River and spatial propagation through the Rhine-Meuse Delta (The Netherlands). Applied Geochemistry, 47, 186–197.

    CAS  Article  Google Scholar 

  • Knappe, A., Jarmersted, C. S., Pekdeger, A., Bau, M., & Dulski, P. (1999). Gadolinium in aquatic systems as indicator for sewage water contamination. Geochemistry of the Earth’s Surface (Armannsson, H., Ed.), 187–190. Balkema, Rotterdam.

  • Konhauser, K. O., Powell, M. A., Fyfe, W. S., Longstaff, F. J., & Tripathy, S. (1997). Trace element geochemistry of river sediment, Orissa State, India. Journal of Hydrology, 193, 258–269.

    CAS  Article  Google Scholar 

  • Kumar, G. (2005). Geology of Uttar Pradesh and Uttaranchal. Geological Society of India, Bangalore, India:Text Book Series.

    Google Scholar 

  • Manna, R. K., Satpathy, B. B., Roshith, C. M., Naskar, M., Bhaumik, U., & Sharma, A. P. (2013). Spatio-temporal changes of hydro-chemical parameters in the estuarine part of the river Ganges under altered hydrological regime and its impact on biotic communities. Aquatic Ecosystem Health & Management, 16, 433–444.

    CAS  Google Scholar 

  • Mao, L., Mo, D., Yang, J., Guo, Y., & Lv, H. (2014). Rare earth elements geochemistry in surface floodplain sediments from the Xiangjiang River, middle reach of Changjiang River, China. Quaternary International, 336, 80–88.

    Article  Google Scholar 

  • Martin, J. M., & Meybeck, M. (1979). Elemental mass-balance of material carried by major world rivers. Marine Chemistry, 7, 173–206.

    CAS  Article  Google Scholar 

  • Mauskar, J. M. (2008). The leading contributor to the water quality degradation in rivers of India is untreated or partially treated sewage. Envis Newsletter, 1.

  • Mohiuddin, K. M., Zakir, H. M., Otomo, K., Sharmin, S., & Shikazono, N. (2010). Geochemical distribution of trace metal pollutants in water and sediments of downstream of an urban river. International Journal of Environmental Science and Technology, 7, 17–28.

    CAS  Article  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediment of the Rhine river. GeoJournal, 2, 108–118.

    Google Scholar 

  • Müller, G. (1979). Heavy metals in the sediment of the Rhine-Changes Seity. Umschau in Wissenschaft und Technik, 79, 778–783.

    Google Scholar 

  • Müller, G. (1981). The heavy metal pollution of the sediments of neckars and its tributary: a stocktaking. Chemiker Zeitung, 105, 157–164.

    Google Scholar 

  • Nakajima, T., & Terakado, Y. (2003). Rare earth elements in stream waters from the Rokko granite area, Japan: effect of weathering degree of watershed rocks. Journal of Geochemical Exploration, 37, 181–198.

    CAS  Article  Google Scholar 

  • Pandey, J., Shubhashish, K., & Pandey, R. (2010). Heavy metal contamination of Ganga river at Varanasi in relation to atmospheric deposition. Tropical Ecology, 51, 365–373.

    CAS  Google Scholar 

  • Pati, J. K., Lal, J., Prakash, K., & Bhusan, R. (2008a). Spatio-temporal shift of western bank of the Ganga River, Allahabad city and its implications. Journal of Indian Society of Remote Sensing, 36, 289–297.

    Article  Google Scholar 

  • Pati, J. K., Reimold, W. U., Koeberl, C., & Pati, P. (2008b). The Dhala structure, Bundelkhand craton, Central India—eroded remnant of a large Paleoproterozoic impact structure. Meteoritics and Planetary Science, 43, 1383–1398.

    CAS  Article  Google Scholar 

  • Petrovsky, E., Kapicka, A., Zapletal, K., Sebestova, E., Spanila, T., Dekkers, M. J., & Rochette, P. (1998). Correlation between magnetic parameters and chemical composition of lake sediments from Northern Bohemia-preliminary study. Physics and Chemistry of Earth, 23, 1123–1126.

    Article  Google Scholar 

  • Pourret, O., Davranche, M., Gruau, G., & Dia, A. (2008). New insights into cerium anomalies in organic rich alkaline waters. Chemical Geology, 251, 120–127.

    CAS  Article  Google Scholar 

  • Poulichet, F. E., Seidel, J. L., & Othoniel, C. (2002). Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of Southern France. Water Research, 36, 1102–1105.

    Article  Google Scholar 

  • Qiao, Y. M., Pan, H., Yang, Y., Gu, J. G., & Zhao, J. G. (2013). Distribution and accumulation of heavy metals in surface sediments from a subtropical bay affected by the special economic zone, China. Water Science Technology, 67, 2009–2016.

    CAS  Article  Google Scholar 

  • Ramesh, R., Ramanathan, A. L., Ramesh, S., Purvaja, R., & Subramanian, V. (2000). Distribution of rare earth elements and heavy metals in the surficial sediments of the Himalayan river system. Geochemical Journal, 34, 295–319.

    CAS  Article  Google Scholar 

  • Rasmussen, E. S., Lomholt, S., Andersen, C., & Vejbæk, O. V. (1998). Aspects of the structural evolution of the Lusitanian Basin in Portugal and the shelf and slope area offshore Portugal. Tectonophysics, 300, 199–225.

    Article  Google Scholar 

  • Rai, P. K., Mishra, A., & Tripathi, B. D. (2010). Heavy metal and microbial pollution of the river Ganga: a case study of water quality at Varanasi. Aquatic Ecology and Health Management, 13, 352–361.

    CAS  Article  Google Scholar 

  • Ray, R., Shukla, A. D., Sheth, H. C., Ray, J. S., Duraiswami, R. A., Vanderkluysen, L., Rautela, C. S., & Mallik, J. (2008). Highly heterogeneous Precambrian basement under the central Deccan traps. India: Direct Evidence from Xenoliths in Dykes, Gondwana Research, 13, 375–385.

    CAS  Google Scholar 

  • Saikia, D. K., Mathur, R. P., & Srivastava, S. K. (1988). Heavy metals in water and sediments of upper Ganga. Indian Journal of Environmental Health, 31, 11–17.

    Google Scholar 

  • Sanghi, R. (2014). Our national river. Ganga:Lifeline of Millions. Switzerland, Springer International Publishing. doi:10.1007/978-3-319-00530-0_1.

    Book  Google Scholar 

  • Sangonde, S. J., Suresh, N., & Bagati, T. N. (2001). Godavari source in the bengal fan sediments results from magnetic susceptibility dispersal pattern. Current Science, 80, 660–664.

  • Salomons, W., & Förstner, U. (1984). Metals in the hydrocycle. Springer-Verlag.

  • Samanta, S. (2013). Metal and pesticide pollution scenario in Ganga River system. Aquatic Ecosystem Health & Management, 16, 454–464.

    CAS  Google Scholar 

  • Schmidt, A., Yarnold, R., Hill, M., & Ashmore, M. (2005). Magnetic susceptibility as proxy for heavy metal pollution: a site study. Journal of Geochemical Exploration, 85, 109–117.

    CAS  Article  Google Scholar 

  • Sepe, A., Ciaralli, L., Ciprotti, M., Giordano, R., Funari, E., & Costantini, S. (2003). Determination of cadmium, chromium, lead and vanadium in six fish species from the Adriatic sea. Food Additives and Contaminants, 20, 543–552.

    CAS  Article  Google Scholar 

  • Sharma, G. R. (1975). Seasonal migrations and Mesolithic cultures of the Ganga Valley. Indian Prehistoric Society, Delhi. P.p. 1–20.

  • Sharma, Y. C., Prasad, G., & Rupainwar, D. C. (1992). Heavy metal pollution of river Ganga in Mirzapur, India. International Journal of Environmental Studies, 40, 41–53.

    CAS  Article  Google Scholar 

  • Sharma, P., Meher, P. K., Kumar, A., Gautam, Y. P., & Mishra, K. P. (2014). Changes in water quality index of Ganges river at different locations in Allahabad. Sustainability of Water Quality and Ecology, 3-4, 67–76.

    Article  Google Scholar 

  • Shukla, A. D. (2011). Geochemical and Isotopic Studies of some Sedimentary Sequences of the Vindhyan Super group, India, a Ph.D. Thesis. M. S. University Baroda, Vadodara, 178.

  • Singh, M., Müller, G., & Singh, I. B. (2002). Heavy metals in freshly deposited stream sediments of rivers associated with urbanisation of the Ganga plain, India. Water, Air, and Soil Pollution, 141, 35–54.

    CAS  Article  Google Scholar 

  • Singh, M., Müller, G., & Singh, I. B. (2003). Geogenic distribution and baseline concentration of heavy metals in sediments of the Ganges River, India. Journal of Geochemical Exploration, 80, 1–17.

    CAS  Article  Google Scholar 

  • Singh, M., & Singh, A. K. (2007). Bibliography of environmental studies in natural characteristics and anthropogenic influences on the Ganga River. Environmental Monitoring and Assessment, 129, 421–432.

    CAS  Article  Google Scholar 

  • Singh, L., Choudhary, S. K., & Singh, P. K. (2012). Status of heavy metal concentration in water and sediment of river Ganga at selected sites in the middle Ganga plain. International Journal of Research in Chemistry and Environment, 2, 236–243.

    CAS  Google Scholar 

  • Srivastava, A., Mehrotra, M. N., & Tiwari, R. N. (1993). Study of pollution of the river Ganga in the Mirzapur region (India) and its impact on sediments. International Journal of Environmental Studies, 43, 201–208.

    CAS  Article  Google Scholar 

  • Subramanian, V., Van, G. R., & Van’t, D. L. (1985). Chemical composition of river sediments from the Indian sub-continent. Chemical Geology, 48, 271–279.

    CAS  Article  Google Scholar 

  • Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society London Special Publications, 42, 313–345.

    Article  Google Scholar 

  • Suther, S., Nema, A. K., Chabukdhara, M., & Gupta, S. K. (2009). Assessments of metals in water and sediments of Hindon River, India: impact of industrial and urban discharge. Journal of Hazardous Material, 171, 1088–1095.

  • Tare, V., Singh Yadav, A. V., & Bose, P. (2003). Analysis of photosynthetic activity in the most polluted stretch of river Ganga. Water Research, 37, 67–77.

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution. Blackwell, Oxford, 312.

  • Tepe, N., Romero, M., & Bau, M. (2014). High-technology metals as emerging contaminants: strong increase of anthropogenic gadolinium levels in tap water of Berlin, Germany, from 2009 to 2012. Applied Geochemistry, 45, 191–197.

  • Trivedi, R. C. (2010). Water quality of the Ganga river—an overview. Aquatic Ecosystem Health & Management, 13, 347–351.

  • Turner, R. E., Rabalais, N. N., Justic, D., & Dortch, Q. (2003). Global patterns of dissolved N, P and Si in large rivers. Biogeochemistry, 64, 297–317.

  • Viers, J., Dupré, B., & Gaillardet, J. (2009). Chemical composition of suspended sediments in world rivers: new insights from a new database. Science of Total Environment, 407, 853–868.

  • Vörösmarty, C. J., Green, P., Salisbury, J., & Lammers, R. (2000). Global water resources: vulnerability from climate change and population growth. Science, 289, 284–288.

  • Vörösmarty, C. J., Meybeck, M., Fekete, B., Sharma, K., Green, P., & Syvitski, J. P. M. (2003). Anthropogenic sediment retention: major global-scale impact from the population of registered impoundments. Global and Planetary Change, 39, 169–190.

  • Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Reidy, L. C., & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555–561.

  • Voutsa, D., Manoli, E., Samara, C., Sofoniou, M., & Stratis, I. (2001). A study of surface water Macedonia, Greece: speciation of nitrogen and phosphorus. Water Air and Soil Pollution, 129, 13–32.

  • Zhang, Z., Chen, Y., Wang, P., Shuai, J., Tao, F., & Shi, P. (2014). River discharge, land use change, and surface water quality in the Xiangjiang River, China. Hydrological Processes, 28, 4130–4140.

    CAS  Article  Google Scholar 

  • Wang, X., Lu, Y., Han, J., He, G., & Wang, T. (2007). Identification of anthropogenic influences on water quality of rivers in taihu watershed. Journal of Environmental Sciences, 19, 475–481.

    CAS  Article  Google Scholar 

  • World Health Organization (WHO) (2008). Guidelines for drinking-water quality: recommendations incorporating 1st and 2nd addenda (3rd ed., ). Geneva:Switzerland.

    Google Scholar 

Download references

Acknowledgments

MC and MU acknowledge UGC’ CRET Fellowship Scheme. They thank the PLANEX, PRL, Ahmedabad for the ICP-MS facility used in the present study. JKP and AN thank GRBM Project (Ministry of Environment and Forest, Govt. of India) for the financial support. They also gratefully acknowledge the helpful comments and critical suggestions received from the two anonymous reviewers which greatly improved the scientific content of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munmun Chakarvorty.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chakarvorty, M., Dwivedi, A.K., Shukla, A.D. et al. Geochemistry and magnetic measurements of suspended sediment in urban sewage water vis-à-vis quantification of heavy metal pollution in Ganga and Yamuna Rivers, India. Environ Monit Assess 187, 604 (2015). https://doi.org/10.1007/s10661-015-4794-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4794-x

Keywords

  • Sewage water
  • Ganga and Yamuna Rivers
  • Suspended sediments
  • Geochemistry
  • Magnetic susceptibility