Advertisement

Geochemistry and magnetic measurements of suspended sediment in urban sewage water vis-à-vis quantification of heavy metal pollution in Ganga and Yamuna Rivers, India

  • Munmun Chakarvorty
  • Akhil Kumar Dwivedi
  • Anil Dutt Shukla
  • Sujeet Kumar
  • Ambalika Niyogi
  • Mavera Usmani
  • Jayanta Kumar Pati
Article

Abstract

Sewage water is becoming a key source of heavy metal toxicity in large river systems worldwide and the two major Himalayan Rivers in India (Ganga and Yamuna) are severely affected. The high population density in the river banks combined with increased anthropogenic and industrial activities is contributing to the heavy metal pollution in these rivers. Geochemical data shows a significant increase in the concentration of all heavy metals (Pb, 48–86 ppm; Zn, 360–834 ppm; V, 45–101 ppm; Ni, 20–143 ppm; Cr, 79–266 ppm; Co, 8.62–22.12 ppm and Mn, 313–603 ppm) in sewage and mixed water (sewage and river water confluence site) samples due to increased effluent discharge from the catchment area. The ΣREE content of sewage water (129 ppm) is lower than the average mixed water samples (142 ppm). However, all the samples show similar REE pattern. The mass magnetic susceptibility (Xlf) values of suspended sediments (28 to 1000 × 10−8 m3 kg−1) indicate variable concentration of heavy metals. The Xlf values show faint positive correlation with their respective bulk heavy metal contents in a limited sample population. The present study comprising geochemical analysis and first magnetic measurement data of suspended sediments in water samples shows a strongly polluted nature of Ganga and Yamuna Rivers at Allahabad contrary to the previous report mainly caused by overtly polluted city sewage water.

Keywords

Sewage water Ganga and Yamuna Rivers Suspended sediments Geochemistry Magnetic susceptibility 

Notes

Acknowledgments

MC and MU acknowledge UGC’ CRET Fellowship Scheme. They thank the PLANEX, PRL, Ahmedabad for the ICP-MS facility used in the present study. JKP and AN thank GRBM Project (Ministry of Environment and Forest, Govt. of India) for the financial support. They also gratefully acknowledge the helpful comments and critical suggestions received from the two anonymous reviewers which greatly improved the scientific content of the manuscript.

References

  1. Abell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., Coad, B., Mandrak, N., Balderas, S. C., Bussing, W., Stiassny, M. L. J., Skelton, P., Allen, G. R., Unmack, P., Naseka, A., Ng, R., Sindorf, N., Robertson, J., Armijo, E., Higgins, J. V., Heibel, T. J., Wikramanayake, E., Olson, D., López, H. L., Reis, R. E., Lundberg, J. G., Pérez, M. H. S., & Petry, P. (2008). Freshwater eco regions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience, 58, 403–414.CrossRefGoogle Scholar
  2. Ajmal, M. D., Khan, M. A., & Nomani, A. A. (1985). Distribution of heavy metals in plants and fish of the Yamuna river (India). Environmental Monitoring and Assessment, 5, 361–367.CrossRefGoogle Scholar
  3. Bau, M., & Dulski, P. (1996). Anthropogenic origin of positive gadolinium anomalies in river waters. Earth and Planetary Science Letters, 143, 245–255.CrossRefGoogle Scholar
  4. Bhargava, D. S. (2006). Revival of Mathura’s ailing Yamuna river. Environmentalist, 26, 111–122.CrossRefGoogle Scholar
  5. Bhattacharya, A., Dey, P., Gola, D., Mishra, A., Malik, A., & Patel, N. (2015). Assessment of Yamuna and associated drains used for irrigation in rural and peri-urban settings of Delhi NCR. Environmental Monitoring and Assessment, 187, 4146(1-13).CrossRefGoogle Scholar
  6. Birch, G., Taylor, S., & Matthai, C. (2001). Small-scale spatial and temporal variance in the concentration of heavy metals in the aquatic sediments: a review and some new concepts. Environmental Pollution, 113, 357–372.CrossRefGoogle Scholar
  7. Boran, M., & Altinok, I. (2010). A review of heavy metals in water, sediment and living organisms in the Blacksea. Turk. Journal of Fish Aquatic Science, 10, 565–572.Google Scholar
  8. Börnstein, L. (1986). Numerical data and functional relationships in science and technology, new series, II/16. Springer-Verlag, Heidelberg:Diamagnetic Susceptibility.Google Scholar
  9. Cazenave, J., Bacchetta, C., Rossi, A., Ale, A., Campana, M., & Parma, M. J. (2014). Deleterious effects of wastewater on the health status of fish: a field caging study. Ecological Indicator, 38, 104–112.CrossRefGoogle Scholar
  10. Chakarvorty, M., Pati, J. K., Patil, S. K., Shukla, S., Niyogi, A., & Saraf, A. K. (2014). Physical characterization, REE geochemistry and biomonitoring of dust-load accumulated during a protracted winter fog period from a north Indian city (Allahabad) and its implications. Environmental Monitoring and Assessment, 186, 2965–2978.CrossRefGoogle Scholar
  11. Chakrapani, G. J., & Subramanian, V. (1996). Fractionation of heavy metals and phosphorus in suspended sediments of the Yamuna river, India. Environmental Monitoring and Assessment, 43, 117–124.CrossRefGoogle Scholar
  12. Chakrapani, G. J. (2005). Major and trace element geochemistry in upper Ganga river in Himalayas, India. Environmental Geology, 48, 189–201.CrossRefGoogle Scholar
  13. Chaparro, M. A. E., Sinito, A. M., Ramasamy, V., Marinelli, C., Chaparro, M. A. E., Mullainathan, S., & Murugesan, S. (2008). Magnetic measurements and pollutants of sediments from Cauvery and Palaru river, India. Environmental Geology, 56, 425–437.CrossRefGoogle Scholar
  14. Chaparro, M. A. E., Chaparro, M. A. E., Rajkumar, P., Ramasamy, V., & Sinito, A. M. (2011). Magnetic parameters, trace elements and multi-variate statistical studies of river sediments from Southeastern India: a case study from the vellar river. Environmental Earth Science, 63, 297–310.CrossRefGoogle Scholar
  15. Chaparro, M. A. E., Suresh, G., Chaparro, M. A. E., Ramasamy, V., & Sinito, A. M. (2013). Magnetic studies and elemental analysis of river sediments: a case study from the Ponnaiyar River (Southeastern India). Environmental Earth Science, 70, 201–213.CrossRefGoogle Scholar
  16. Dalai, T. K., Rengarajan, R., & Patel, P. P. (2004). Sediment geochemistry of the Yamuna river system in the Himalaya: implications to weathering and transport. Geochemical Journal, 38, 441–453.CrossRefGoogle Scholar
  17. Das, S. (2011). Cleaning of the Ganga. Journal of the Geological Society of India, 78, 124–130.CrossRefGoogle Scholar
  18. Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z., Knowler, D. J., Lévêque, C., Naiman, R. J., Richard, A. H., Soto, D., Stiassny, M. L., & Sullivan, C. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society, 81, 163–182.CrossRefGoogle Scholar
  19. Elderfield, H., Upstill-Goddard, R., & Sholkovitz, E. R. (1990). The rare earth elements in rivers, estuaries and coastal seas and their significance to the composition of ocean waters. Geochimica et Cosmochimica Acta, 54, 971–991.CrossRefGoogle Scholar
  20. Förstner, U., & Müller, G. (1981). Concentrations of heavy metals and polycyclic aromatic hydrocarbons in river sediments: geochemical background, man’s influence and environmental impact. GeoJournal, 5, 417–432.CrossRefGoogle Scholar
  21. Gaillardet, J., Viers, J., & Dupré, B. (2004). Trace elements in river waters. In J. I. Drever (Ed.), Surface and ground water, weathering, and soils. Treatise on geochemistry (pp. 225–272). San Diego: Elsevier.Google Scholar
  22. Gromet, L. P., Dymek, R. F., Haskin, L. A., & Korotev, R. L. (1984). The North American shale composite; its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48, 2469–2482.CrossRefGoogle Scholar
  23. Gupta, A., Rai, D. K., Pandey, R. S., & Sharma, B. (2009). Analysis of some heavy metals in the riverine water sediments and fish from river Ganges at Allahabad. Environmental Monitoring and Assessment, 157, 449–458.CrossRefGoogle Scholar
  24. Gupta, S. K., Chabukdhara, M., Kumar, P., Singh, J., & Bux, F. (2014). Evaluation of ecological risk of metal contamination in river Gomti, India: a biomonitoring approach. Ecotoxicology and Environmental Safety, 110, 49–55.CrossRefGoogle Scholar
  25. Huang, F., Wang, X., Lou, L., Zhiqing, Z. D., & Jiaping, W. (2010). Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water Research, 44, 1562–1572.CrossRefGoogle Scholar
  26. Ingri, J., Andersson, P. S., Widerlund, A., Öhlander, B., Gustafsson, Ö., & Land, M. (2000). The Ce-anomaly in river suspended matter: an indicator of hydrogeochemical processes in a boreal catchment. Goldschmidt Abstract, 5, 540.Google Scholar
  27. IUCN (2010). IUCN Red List of Threatened Species. Version 010.1.www.iucnredlist.org.
  28. Jackson, R. B., Carpenter, S. R., Dahm, C. N., McKnight, D. M., Naiman, R. J., Postel, S. L., & Running, S. W. (2001). Water in a changing world. Ecological Application, 11, 1027–1045.CrossRefGoogle Scholar
  29. Jain, C. K. (2002). A hydro-chemical study of a mountainous watershed: the Ganga, India. Water Research, 36, 1262–1274.Google Scholar
  30. Kar, D., Sur, P., Mandal, S. K., Saha, T., & Kole, R. K. (2008). Assessment of heavy metal pollution in surface water. International Journal of Environmental Science and Technology, 5, 119–124.CrossRefGoogle Scholar
  31. Klaver, G., Verheu, M., Bakker, I., Giraud, E. P., & Négrel, P. (2014). Anthropogenic rare earth element in rivers: gadolinium and lanthanum. Partitioning between the dissolved and particulate phases in the Rhine River and spatial propagation through the Rhine-Meuse Delta (The Netherlands). Applied Geochemistry, 47, 186–197.CrossRefGoogle Scholar
  32. Knappe, A., Jarmersted, C. S., Pekdeger, A., Bau, M., & Dulski, P. (1999). Gadolinium in aquatic systems as indicator for sewage water contamination. Geochemistry of the Earth’s Surface (Armannsson, H., Ed.), 187–190. Balkema, Rotterdam.Google Scholar
  33. Konhauser, K. O., Powell, M. A., Fyfe, W. S., Longstaff, F. J., & Tripathy, S. (1997). Trace element geochemistry of river sediment, Orissa State, India. Journal of Hydrology, 193, 258–269.CrossRefGoogle Scholar
  34. Kumar, G. (2005). Geology of Uttar Pradesh and Uttaranchal. Geological Society of India, Bangalore, India:Text Book Series.Google Scholar
  35. Manna, R. K., Satpathy, B. B., Roshith, C. M., Naskar, M., Bhaumik, U., & Sharma, A. P. (2013). Spatio-temporal changes of hydro-chemical parameters in the estuarine part of the river Ganges under altered hydrological regime and its impact on biotic communities. Aquatic Ecosystem Health & Management, 16, 433–444.Google Scholar
  36. Mao, L., Mo, D., Yang, J., Guo, Y., & Lv, H. (2014). Rare earth elements geochemistry in surface floodplain sediments from the Xiangjiang River, middle reach of Changjiang River, China. Quaternary International, 336, 80–88.CrossRefGoogle Scholar
  37. Martin, J. M., & Meybeck, M. (1979). Elemental mass-balance of material carried by major world rivers. Marine Chemistry, 7, 173–206.CrossRefGoogle Scholar
  38. Mauskar, J. M. (2008). The leading contributor to the water quality degradation in rivers of India is untreated or partially treated sewage. Envis Newsletter, 1.Google Scholar
  39. Mohiuddin, K. M., Zakir, H. M., Otomo, K., Sharmin, S., & Shikazono, N. (2010). Geochemical distribution of trace metal pollutants in water and sediments of downstream of an urban river. International Journal of Environmental Science and Technology, 7, 17–28.CrossRefGoogle Scholar
  40. Muller, G. (1969). Index of geoaccumulation in sediment of the Rhine river. GeoJournal, 2, 108–118.Google Scholar
  41. Müller, G. (1979). Heavy metals in the sediment of the Rhine-Changes Seity. Umschau in Wissenschaft und Technik, 79, 778–783.Google Scholar
  42. Müller, G. (1981). The heavy metal pollution of the sediments of neckars and its tributary: a stocktaking. Chemiker Zeitung, 105, 157–164.Google Scholar
  43. Nakajima, T., & Terakado, Y. (2003). Rare earth elements in stream waters from the Rokko granite area, Japan: effect of weathering degree of watershed rocks. Journal of Geochemical Exploration, 37, 181–198.CrossRefGoogle Scholar
  44. Pandey, J., Shubhashish, K., & Pandey, R. (2010). Heavy metal contamination of Ganga river at Varanasi in relation to atmospheric deposition. Tropical Ecology, 51, 365–373.Google Scholar
  45. Pati, J. K., Lal, J., Prakash, K., & Bhusan, R. (2008a). Spatio-temporal shift of western bank of the Ganga River, Allahabad city and its implications. Journal of Indian Society of Remote Sensing, 36, 289–297.CrossRefGoogle Scholar
  46. Pati, J. K., Reimold, W. U., Koeberl, C., & Pati, P. (2008b). The Dhala structure, Bundelkhand craton, Central India—eroded remnant of a large Paleoproterozoic impact structure. Meteoritics and Planetary Science, 43, 1383–1398.CrossRefGoogle Scholar
  47. Petrovsky, E., Kapicka, A., Zapletal, K., Sebestova, E., Spanila, T., Dekkers, M. J., & Rochette, P. (1998). Correlation between magnetic parameters and chemical composition of lake sediments from Northern Bohemia-preliminary study. Physics and Chemistry of Earth, 23, 1123–1126.CrossRefGoogle Scholar
  48. Pourret, O., Davranche, M., Gruau, G., & Dia, A. (2008). New insights into cerium anomalies in organic rich alkaline waters. Chemical Geology, 251, 120–127.CrossRefGoogle Scholar
  49. Poulichet, F. E., Seidel, J. L., & Othoniel, C. (2002). Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of Southern France. Water Research, 36, 1102–1105.CrossRefGoogle Scholar
  50. Qiao, Y. M., Pan, H., Yang, Y., Gu, J. G., & Zhao, J. G. (2013). Distribution and accumulation of heavy metals in surface sediments from a subtropical bay affected by the special economic zone, China. Water Science Technology, 67, 2009–2016.CrossRefGoogle Scholar
  51. Ramesh, R., Ramanathan, A. L., Ramesh, S., Purvaja, R., & Subramanian, V. (2000). Distribution of rare earth elements and heavy metals in the surficial sediments of the Himalayan river system. Geochemical Journal, 34, 295–319.CrossRefGoogle Scholar
  52. Rasmussen, E. S., Lomholt, S., Andersen, C., & Vejbæk, O. V. (1998). Aspects of the structural evolution of the Lusitanian Basin in Portugal and the shelf and slope area offshore Portugal. Tectonophysics, 300, 199–225.CrossRefGoogle Scholar
  53. Rai, P. K., Mishra, A., & Tripathi, B. D. (2010). Heavy metal and microbial pollution of the river Ganga: a case study of water quality at Varanasi. Aquatic Ecology and Health Management, 13, 352–361.CrossRefGoogle Scholar
  54. Ray, R., Shukla, A. D., Sheth, H. C., Ray, J. S., Duraiswami, R. A., Vanderkluysen, L., Rautela, C. S., & Mallik, J. (2008). Highly heterogeneous Precambrian basement under the central Deccan traps. India: Direct Evidence from Xenoliths in Dykes, Gondwana Research, 13, 375–385.Google Scholar
  55. Saikia, D. K., Mathur, R. P., & Srivastava, S. K. (1988). Heavy metals in water and sediments of upper Ganga. Indian Journal of Environmental Health, 31, 11–17.Google Scholar
  56. Sanghi, R. (2014). Our national river. Ganga:Lifeline of Millions. Switzerland, Springer International Publishing. doi: 10.1007/978-3-319-00530-0_1.CrossRefGoogle Scholar
  57. Sangonde, S. J., Suresh, N., & Bagati, T. N. (2001). Godavari source in the bengal fan sediments results from magnetic susceptibility dispersal pattern. Current Science, 80, 660–664.Google Scholar
  58. Salomons, W., & Förstner, U. (1984). Metals in the hydrocycle. Springer-Verlag.Google Scholar
  59. Samanta, S. (2013). Metal and pesticide pollution scenario in Ganga River system. Aquatic Ecosystem Health & Management, 16, 454–464.Google Scholar
  60. Schmidt, A., Yarnold, R., Hill, M., & Ashmore, M. (2005). Magnetic susceptibility as proxy for heavy metal pollution: a site study. Journal of Geochemical Exploration, 85, 109–117.CrossRefGoogle Scholar
  61. Sepe, A., Ciaralli, L., Ciprotti, M., Giordano, R., Funari, E., & Costantini, S. (2003). Determination of cadmium, chromium, lead and vanadium in six fish species from the Adriatic sea. Food Additives and Contaminants, 20, 543–552.CrossRefGoogle Scholar
  62. Sharma, G. R. (1975). Seasonal migrations and Mesolithic cultures of the Ganga Valley. Indian Prehistoric Society, Delhi. P.p. 1–20.Google Scholar
  63. Sharma, Y. C., Prasad, G., & Rupainwar, D. C. (1992). Heavy metal pollution of river Ganga in Mirzapur, India. International Journal of Environmental Studies, 40, 41–53.CrossRefGoogle Scholar
  64. Sharma, P., Meher, P. K., Kumar, A., Gautam, Y. P., & Mishra, K. P. (2014). Changes in water quality index of Ganges river at different locations in Allahabad. Sustainability of Water Quality and Ecology, 3-4, 67–76.CrossRefGoogle Scholar
  65. Shukla, A. D. (2011). Geochemical and Isotopic Studies of some Sedimentary Sequences of the Vindhyan Super group, India, a Ph.D. Thesis. M. S. University Baroda, Vadodara, 178.Google Scholar
  66. Singh, M., Müller, G., & Singh, I. B. (2002). Heavy metals in freshly deposited stream sediments of rivers associated with urbanisation of the Ganga plain, India. Water, Air, and Soil Pollution, 141, 35–54.CrossRefGoogle Scholar
  67. Singh, M., Müller, G., & Singh, I. B. (2003). Geogenic distribution and baseline concentration of heavy metals in sediments of the Ganges River, India. Journal of Geochemical Exploration, 80, 1–17.CrossRefGoogle Scholar
  68. Singh, M., & Singh, A. K. (2007). Bibliography of environmental studies in natural characteristics and anthropogenic influences on the Ganga River. Environmental Monitoring and Assessment, 129, 421–432.CrossRefGoogle Scholar
  69. Singh, L., Choudhary, S. K., & Singh, P. K. (2012). Status of heavy metal concentration in water and sediment of river Ganga at selected sites in the middle Ganga plain. International Journal of Research in Chemistry and Environment, 2, 236–243.Google Scholar
  70. Srivastava, A., Mehrotra, M. N., & Tiwari, R. N. (1993). Study of pollution of the river Ganga in the Mirzapur region (India) and its impact on sediments. International Journal of Environmental Studies, 43, 201–208.CrossRefGoogle Scholar
  71. Subramanian, V., Van, G. R., & Van’t, D. L. (1985). Chemical composition of river sediments from the Indian sub-continent. Chemical Geology, 48, 271–279.CrossRefGoogle Scholar
  72. Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society London Special Publications, 42, 313–345.CrossRefGoogle Scholar
  73. Suther, S., Nema, A. K., Chabukdhara, M., & Gupta, S. K. (2009). Assessments of metals in water and sediments of Hindon River, India: impact of industrial and urban discharge. Journal of Hazardous Material, 171, 1088–1095.Google Scholar
  74. Tare, V., Singh Yadav, A. V., & Bose, P. (2003). Analysis of photosynthetic activity in the most polluted stretch of river Ganga. Water Research, 37, 67–77.Google Scholar
  75. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution. Blackwell, Oxford, 312.Google Scholar
  76. Tepe, N., Romero, M., & Bau, M. (2014). High-technology metals as emerging contaminants: strong increase of anthropogenic gadolinium levels in tap water of Berlin, Germany, from 2009 to 2012. Applied Geochemistry, 45, 191–197.Google Scholar
  77. Trivedi, R. C. (2010). Water quality of the Ganga river—an overview. Aquatic Ecosystem Health & Management, 13, 347–351.Google Scholar
  78. Turner, R. E., Rabalais, N. N., Justic, D., & Dortch, Q. (2003). Global patterns of dissolved N, P and Si in large rivers. Biogeochemistry, 64, 297–317.Google Scholar
  79. Viers, J., Dupré, B., & Gaillardet, J. (2009). Chemical composition of suspended sediments in world rivers: new insights from a new database. Science of Total Environment, 407, 853–868.Google Scholar
  80. Vörösmarty, C. J., Green, P., Salisbury, J., & Lammers, R. (2000). Global water resources: vulnerability from climate change and population growth. Science, 289, 284–288.Google Scholar
  81. Vörösmarty, C. J., Meybeck, M., Fekete, B., Sharma, K., Green, P., & Syvitski, J. P. M. (2003). Anthropogenic sediment retention: major global-scale impact from the population of registered impoundments. Global and Planetary Change, 39, 169–190.Google Scholar
  82. Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Reidy, L. C., & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555–561.Google Scholar
  83. Voutsa, D., Manoli, E., Samara, C., Sofoniou, M., & Stratis, I. (2001). A study of surface water Macedonia, Greece: speciation of nitrogen and phosphorus. Water Air and Soil Pollution, 129, 13–32.Google Scholar
  84. Zhang, Z., Chen, Y., Wang, P., Shuai, J., Tao, F., & Shi, P. (2014). River discharge, land use change, and surface water quality in the Xiangjiang River, China. Hydrological Processes, 28, 4130–4140.CrossRefGoogle Scholar
  85. Wang, X., Lu, Y., Han, J., He, G., & Wang, T. (2007). Identification of anthropogenic influences on water quality of rivers in taihu watershed. Journal of Environmental Sciences, 19, 475–481.CrossRefGoogle Scholar
  86. World Health Organization (WHO) (2008). Guidelines for drinking-water quality: recommendations incorporating 1st and 2nd addenda (3rd ed., ). Geneva:Switzerland.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Munmun Chakarvorty
    • 1
  • Akhil Kumar Dwivedi
    • 1
  • Anil Dutt Shukla
    • 2
  • Sujeet Kumar
    • 1
  • Ambalika Niyogi
    • 1
  • Mavera Usmani
    • 1
  • Jayanta Kumar Pati
    • 1
  1. 1.Department of Earth and Planetary Sciences, Nehru Science CentreUniversity of AllahabadAllahabadIndia
  2. 2.Physical Research LaboratoryThaltej CampusAhmedabadIndia

Personalised recommendations