Skip to main content
Log in

Cempedak durian as a potential biosorbent for the removal of Brilliant Green dye from aqueous solution: equilibrium, thermodynamics and kinetics studies

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Cempedak durian peel (CDP) was used to remove Brilliant Green (BG) dye from aqueous solution. The adsorption of BG onto CDP was studied as functions of contact time, pH, temperature, ionic strength and initial concentration. In order to understand the adsorption process and its mechanisms, adsorption isotherm and kinetics models were used. The experiments were done under optimized 2-h contact time and ambient pH. Adsorption study showed that the Langmuir model best fitted with experimental data, and the maximum adsorption capacity was determined as 0.203 mmol g−1 (97.995 mg g−1). Adsorption kinetics followed the pseudo 2nd order model, and intraparticle diffusion is involved but not as the rate-limiting step while Boyd model suggests that film diffusion might be in control of the adsorption process. Fourier transform infrared (FTIR) analysis showed that OH, C=O, C=C and NH functional groups might be involved in the adsorption of BG onto CDP. Thermodynamic study suggested that the adsorption of BG onto CDP is endothermic with ΔH o value of 12 kJ mol−1 and adsorption is feasible. Regeneration of CDP’s ability to remove BG was also studied using three different washing solutions. NaOH (0.1 M) was not only sufficient to be used to regenerate CDP’s ability to remove BG but also improved its adsorption capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdallah, R., & Taha, S. (2012). Biosorption of methylene blue from aqueous solution by nonviable Aspergillus fumigatus. Chemical Engineering Journal, 195, 69–76. doi:10.1016/j.cej.2012.04.066.

    Article  Google Scholar 

  • Abdolali, A., Guo, W. S., Ngo, H. H., Chen, S. S., Nguyen, N. C., & Tung, K. L. (2014). Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review. Bioresource Technology, 160, 57–66. doi:10.1016/j.biortech.2013.12.037.

    Article  CAS  Google Scholar 

  • Bhatnagar, A., & Sillanpää, M. (2010). Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chemical Engineering Journal, 157(2–3), 277–296. doi:10.1016/j.cej.2010.01.007.

    Article  CAS  Google Scholar 

  • Boyd, G. E., Adamson, A. W., & Myers, L. S. (1947). The exchange adsorption of ions from aqueous solutions by organic zeolites.; kinetics. Journal of the American Chemical Society, 69(11), 2836–2848. doi:10.1021/ja01203a066.

    Article  CAS  Google Scholar 

  • Bulut, Y., & Tez, Z. (2007). Removal of heavy metals from aqueous solution by sawdust adsorption. Journal of Environmental Sciences, 19(2), 160–166. doi:10.1016/S1001-0742(07)60026-6.

    Article  CAS  Google Scholar 

  • Chieng, H. I., Zehra, T., Lim, L. B. L., Priyantha, N., & Tennakoon, D. T. B. (2014). Sorption characteristics of peat of Brunei Darussalam IV: equilibrium, thermodynamics and kinetics of adsorption of methylene blue and malachite green dyes from aqueous solution. Environmental Earth Sciences, 72(7), 2263–2277. doi:10.1007/s12665-014-3135-7.

    Article  CAS  Google Scholar 

  • Chieng, H. I., Priyantha, N., & Lim, L. B. L. (2015). Effective adsorption of toxic brilliant green from aqueous solution using peat of Brunei Darussalam: isotherms, thermodynamics, kinetics and regeneration studies. RSC Advances, 5(44), 34603–34615. doi:10.1039/C5RA01572C.

    Article  CAS  Google Scholar 

  • Chowdhury, S., Misra, R., Kushwaha, P., & Das, P. (2011). Optimum sorption isotherm by linear and nonlinear methods for Safranin onto alkali-treated rice husk. Bioremediation Journal, 15(2), 77. doi:10.1080/10889868.2011.570282.

    Article  CAS  Google Scholar 

  • Dahri, M. K., Kooh, M. R. R., & Lim, L. B. L. (2014). Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamic and regeneration studies. Journal of Environmental Chemical Engineering, 2(3), 1434–1444. doi:10.1016/j.jece.2014.07.008.

    Article  CAS  Google Scholar 

  • Daraei, H., Mittal, A., Mittal, J., Kamali, H. (2013). Optimization of Cr(VI) removal onto biosorbent eggshell membrane: experimental & theoretical approaches. Desalination and Water Treatment, 1–9, doi:10.1080/19443994.2013.787374.

  • Dileepa Chathuranga, P. K., Priyantha, N., Iqbal, S., & Mohomed Iqbal, M. C. (2013). Biosorption of Cr(III) and Cr(VI) species from aqueous solution by Cabomba caroliniana: kinetic and equilibrium study. Environmental Earth Sciences, 70(2), 661–671. doi:10.1007/s12665-012-2150-9.

    Article  CAS  Google Scholar 

  • Dubinin, M. M. (1960). The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chemical Reviews, 60(2), 235–241. doi:10.1021/cr60204a006.

    Article  CAS  Google Scholar 

  • Farhan, A. M., Al-Dujaili, A. H., & Awwad, A. M. (2013). Equilibrium and kinetic studies of cadmium(II) and lead(II) ions biosorption onto Ficus carica leaves. International Journal of Industrial Chemistry, 4(1), 1–8. doi:10.1186/2228-5547-4-24.

    Article  Google Scholar 

  • Fernandez, M. E., Nunell, G. V., Bonelli, P. R., & Cukierman, A. L. (2012). Batch and dynamic biosorption of basic dyes from binary solutions by alkaline-treated cypress cone chips. Bioresource Technology, 106, 55. doi:10.1016/j.biortech.2011.12.003.

    Article  CAS  Google Scholar 

  • Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, 385–470.

    CAS  Google Scholar 

  • Gad, H. M. H., & El-Sayed, A. A. (2009). Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution. Journal of Hazardous Materials, 168(2–3), 1070–1081. doi:10.1016/j.jhazmat.2009.02.155.

    Article  CAS  Google Scholar 

  • Germán-Heins, J., & Flury, M. (2000). Sorption of Brilliant Blue FCF in soils as affected by pH and ionic strength. Geoderma, 97(1–2), 87–101. doi:10.1016/S0016-7061(00)00027-6.

    Article  Google Scholar 

  • Hamdaoui, O. (2006). Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. Journal of Hazardous Materials, 135(1–3), 264–273. doi:10.1016/j.jhazmat.2005.11.062.

    Article  CAS  Google Scholar 

  • Hameed, B. H. (2009). Removal of cationic dye from aqueous solution using jackfruit peel as non-conventional low-cost adsorbent. Journal of Hazardous Materials, 162(1), 344–350. doi:10.1016/j.jhazmat.2008.05.045.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465. doi:10.1016/S0032-9592(98)00112-5.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & Wang, C. C. (2008). Sorption equilibrium of mercury onto ground-up tree fern. Journal of Hazardous Materials, 158(1–3), 398–404. doi:10.1016/j.jhazmat.2007.12.030.

    Article  Google Scholar 

  • Karaoğlu, M. H., Doğan, M., & Alkan, M. (2010). Kinetic analysis of reactive blue 221 adsorption on kaolinite. Desalination, 256(1–3), 154–165. doi:10.1016/j.desal.2010.01.021.

    Article  Google Scholar 

  • Kismir, Y., & Aroguz, A. Z. (2011). Adsorption characteristics of the hazardous dye Brilliant Green on Saklıkent mud. Chemical Engineering Journal, 172(1), 199–206. doi:10.1016/j.cej.2011.05.090.

    Article  CAS  Google Scholar 

  • Kooh, M., Lim, L. L., Dahri, M., Lim, L., & Sarath Bandara, J. M. R. (2015a). Azolla pinnata: an efficient low cost material for removal of methyl violet 2B by using adsorption method. Waste and Biomass Valorization, 6(4), 547–559. doi:10.1007/s12649-015-9369-0.

    Article  Google Scholar 

  • Kooh, M. R. R., Lim, L. B. L., Lim, L. H., Bandara, J. M. R. S. (2015b). Batch adsorption studies on the removal of malachite green from water by chemically modified Azolla pinnata. Desalination and Water Treatment, 1–15, doi:10.1080/19443994.2015.1065450.

  • Kumar, R., & Barakat, M. A. (2013). Decolourization of hazardous brilliant green from aqueous solution using binary oxidized cactus fruit peel. Chemical Engineering Journal, 226, 377–383. doi:10.1016/j.cej.2013.04.063.

    Article  CAS  Google Scholar 

  • Kumar, D., & Gaur, J. P. (2011). Metal biosorption by two cyanobacterial mats in relation to pH, biomass concentration, pretreatment and reuse. Bioresource Technology, 102(3), 2529. doi:10.1016/j.biortech.2010.11.061.

    Article  CAS  Google Scholar 

  • Lafi, R., ben Fradj, A., Hafiane, A., & Hameed, B. H. (2014). Coffee waste as potential adsorbent for the removal of basic dyes from aqueous solution. Korean Journal of Chemical Engineering, 31(12), 2198–2206. doi:10.1007/s11814-014-0171-7.

    Article  CAS  Google Scholar 

  • Lagergren, S. (1898). About the theory of so called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar, 24(4), 1–39.

    Google Scholar 

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38(11), 2221–2295. doi:10.1021/ja02254a006.

    Article  CAS  Google Scholar 

  • Li, G., Zhang, D., Li, Q., & Chen, G. (2014). Effects of pH on isotherm modeling and cation competition for Cd(II) and Cu(II) biosorption on Myriophyllum spicatum from aqueous solutions. Environmental Earth Sciences, 72(11), 4237–4247. doi:10.1007/s12665-014-3319-1.

    Article  CAS  Google Scholar 

  • Lim, L. B. L., Priyantha, N., Tennakoon, D. T. B., & Dahri, M. K. (2012). Biosorption of cadmium(II) and copper(II) ions from aqueous solution by core of Artocarpus odoratissimus. Environmental Science and Pollution Research International, 19(8), 3250–3256. doi:10.1007/s11356-012-0831-2.

    Article  CAS  Google Scholar 

  • Lim, L. B. L., Priyantha, N., Tennakoon, D. T. B., Chieng, H. I., Dahri, M. K., & Suklueng, M. (2013). Breadnut peel as a highly effective low-cost biosorbent for methylene blue: equilibrium, thermodynamic and kinetic studies. Arabian Journal of Chemistry. doi:10.1016/j.arabjc.2013.12.018.

    Google Scholar 

  • Lim, L. B. L., Priyantha, N., Chieng, H. I., Dahri, M. K., Tennakoon, D. T. B., Zehra, T., & Suklueng, M. (2015). Artocarpus odoratissimus skin as a potential low-cost biosorbent for the removal of methylene blue and methyl violet 2B. Desalination and Water Treatment, 53(4), 964–975. doi:10.1080/19443994.2013.852136.

    CAS  Google Scholar 

  • Liu, Y., Luo, L., Chen, G. L., Xie, M. J., & Yu, Z. L. (2010). Adsorption of lead ions on ground tyre rubber grafted with maleic anhydride via surface-initiated ATRP polymerization. Iranian Polymer Journal, 19(3), 207–218.

    CAS  Google Scholar 

  • Mane, V. S., & Babu, P. V. V. (2011). Studies on the adsorption of Brilliant Green dye from aqueous solution onto low-cost NaOH treated saw dust. Desalination, 273(2–3), 321–329. doi:10.1016/j.desal.2011.01.049.

    Article  CAS  Google Scholar 

  • McKay, G., Blair, H. S., & Gardner, J. R. (1982). Adsorption of dyes on chitin. I. Equilibrium studies. Journal of Applied Polymer Science, 27(8), 3043. doi:10.1002/app.1982.070270827.

    Article  CAS  Google Scholar 

  • Nadeem, R., Ansari, T. M., & Khalid, A. M. (2008). Fourier transform infrared spectroscopic characterization and optimization of Pb(II) biosorption by fish (Labeo rohita) scales. Journal of Hazardous Materials, 156(1–3), 64–73. doi:10.1016/j.jhazmat.2007.11.124.

    Article  CAS  Google Scholar 

  • Noroozi, B., Sorial, G. A., Bahrami, H., & Arami, M. (2008). Adsorption of binary mixtures of cationic dyes. Dyes Pigment, 76(3), 784–791. doi:10.1016/j.dyepig.2007.02.003.

    Article  CAS  Google Scholar 

  • Ofomaja, A. E., & Ho, Y.-S. (2008). Effect of temperatures and pH on methyl violet biosorption by Mansonia wood sawdust. Bioresource Technology, 99(13), 5411–5417. doi:10.1016/j.biortech.2007.11.018.

    Article  CAS  Google Scholar 

  • Panda, G. C., Das, S. K., Bandopadhyay, T. S., & Guha, A. K. (2007). Adsorption of nickel on husk of Lathyrus sativus: behavior and binding mechanism. Colloid Surface B, 57(2), 135–142. doi:10.1016/j.colsurfb.2007.01.022.

    Article  CAS  Google Scholar 

  • Pavia, D. L., Lampman, G. M., & Kriz, G. S. (1996). Introduction to spectroscopy. Florida: Saunders College Publishing.

    Google Scholar 

  • Priyantha, N., Lim, L. B. L., Tennakoon, D. T. B., Mansor, N. H. M., Dahri, M. K., & Chieng, H. I. (2013). Breadfruit (Artocarpus altilis) waste for bioremediation of Cu (II) and Cd(II) ions from aqueous medium. Ceylon Journal of Science (Physical Sciences), 17, 19–29.

    Google Scholar 

  • Rajaram, R., Banu, J. S., & Mathivanan, K. (2013). Biosorption of Cu (II) ions by indigenous copper-resistant bacteria isolated from polluted coastal environment. Toxicological and Environmental Chemistry, 95(4), 590–604. doi:10.1080/02772248.2013.801979.

    Article  CAS  Google Scholar 

  • Rehman, M. S. U., Munir, M., Ashfaq, M., Rashid, N., Nazar, M. F., Danish, M., & Han, J.-I. (2013). Adsorption of Brilliant Green dye from aqueous solution onto red clay. Chemical Engineering Journal, 228, 54–62. doi:10.1016/j.cej.2013.04.094.

    Article  CAS  Google Scholar 

  • Rodríguez, I. A., Juárez, V. M. M., González, J. F. C., & Zárate, M. D. G. M. (2013). Biosorption of arsenic(III) from aqueous solutions by modified fungal biomass of Paecilomyces sp. Bioinorganic Chemistry and Applications. doi:10.1155/2013/376780.

    Google Scholar 

  • Shirsath, S. R., Patil, A. P., Patil, R., Naik, J. B., Gogate, P. R., & Sonawane, S. H. (2013). Removal of Brilliant Green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: a comparative study. Ultrasonics Sonochemistry, 20(3), 914–923. doi:10.1016/j.ultsonch.2012.11.010.

    Article  CAS  Google Scholar 

  • Sips, R. (1948). Combined form of Langmuir and Freundlich equations. Journal of Chemical Physics, 16, 490–495.

    Article  CAS  Google Scholar 

  • Tavlieva, M. P., Genieva, S. D., Georgieva, V. G., & Vlaev, L. T. (2013). Kinetic study of brilliant green adsorption from aqueous solution onto white rice husk ash. Journal of Colloid and Interface Science, 409, 112–122. doi:10.1016/j.jcis.2013.07.052.

    Article  CAS  Google Scholar 

  • Tempkin, M. I., & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physiochimica USSR, 12, 327–356.

    Google Scholar 

  • Tsai, S. C., & Juang, K. W. (2000). Comparison of linear and nonlinear forms of isotherm models for strontium sorption on a sodium bentonite. Journal of Radioanalytical and Nuclear Chemistry, 243(3), 741–746. doi:10.1023/A:1010694910170.

    Article  CAS  Google Scholar 

  • Vilar, V. J. P., Botelho, C. M. S., & Boaventura, R. A. R. (2005). Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste. Process Biochemistry, 40(10), 3267–3275. doi:10.1016/j.procbio.2005.03.023.

    Article  CAS  Google Scholar 

  • Wahab, M. A., Jellali, S., & Jedidi, N. (2010). Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresource Technology, 101(14), 5070–5075. doi:10.1016/j.biortech.2010.01.121.

    Article  CAS  Google Scholar 

  • Weber, W., & Morris, J. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31–60.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Government of Brunei Darussalam and Universiti Brunei Darussalam for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Khairud Dahri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahri, M.K., Lim, L.B.L. & Mei, C.C. Cempedak durian as a potential biosorbent for the removal of Brilliant Green dye from aqueous solution: equilibrium, thermodynamics and kinetics studies. Environ Monit Assess 187, 546 (2015). https://doi.org/10.1007/s10661-015-4768-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4768-z

Keyword

Navigation