Skip to main content

Advertisement

Log in

The influence of wind farm development on the hydrochemistry and ecology of an upland stream

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Despite perceptions of pristine condition, upland environments are increasingly subject to a range of anthropogenic pressures including air pollution, climate change, land-use change and evolving land management strategies. Although they have received little attention to date, the large-scale development of upland wind farms also has the potential to disturb vegetation and soils, alter hydrology and water quality and, thus, impact freshwater ecosystems. This paper presents the findings of a 5-year study of the impacts of wind farm construction on the freshwater environment. Data on water quality, invertebrate and fish populations were collected for 2 years before construction and for the following 3 years covering the construction period and the initial period of the farm’s operation. In contrast to previous studies, the impacts of the wind farm development were assessed for a suite of potentially affected hydrochemical variables using a before-after-control-impact (BACI) analysis that allowed separation of construction effects from spatial and temporal variability in hydroclimatological conditions, thereby providing an improved, more robust evidence base. There was a small but significant negative effect of construction on pH, alkalinity (Alk) and acid neutralising capacity (ANC) in the upper part of the treatment catchment, which was where the wind farm was situated. The effects were more marked under higher flow conditions. It is hypothesised that this reflects changes in hydrological processes with increased near-surface runoff or organic acid mobilisation. There was no indication that either invertebrate community structure or fish densities were impacted by construction and the resulting effects on water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Azrina, M. Z., Yap, C. K., Ismail, A. R., Ismail, A., & Tan, S. G. (2006). Anthropogenic impacts on the distribution and biodiversity of benthic macroinvertebrates and water quality of the Langat River, Peninsular Malaysia. Ecotoxicology and Environmental Safety, 64, 337–347.

    Article  CAS  Google Scholar 

  • Bash, J., Berman, C., & Bolton, S. (2001). Effects of turbidity and suspended solids on salmonids. USA: Centre for Streamside Studies, University of Washington.

    Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57(1), 289–300.

    Google Scholar 

  • Bilotta, G. S., & Brazier, R. E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. Water Research, 42(12), 2849–2861.

    Article  CAS  Google Scholar 

  • Borchers, D. L., Buckland, S. T., & Zucchini, W. (2002). Estimating animal abundance: closed populations (statistics for biology and health). Gateshead: Athenaeum Press Ltd.. 314 pages.

    Book  Google Scholar 

  • Bozdogan, H. (1987). Model selection and Akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychometrika, 52, 345–370.

    Article  Google Scholar 

  • Brown, L.E., Holden, J., Palmer, S.M. (2014). Effects of moorland burning on the ecohydrology of river basins. Key findings from the EMBER project. University of Leeds.

  • Buendia, C., Gibbins, C. N., Vericat, D., & Batalla, R. J. (2013). Reach and catchment-scale influences on invertebrate assemblages in a river with naturally high fine sediment loads. Limnologica-Ecology and Management of Inland Waters, 43(5), 362–370.

    Article  Google Scholar 

  • Buendia, C., Gibbins, C. N., Vericat, D., & Batalla, R. J. (2014). Effects of flow and fine sediment dynamics on the turnover of stream invertebrate assemblages. Ecohydrology, 7(4), 1105–1123. doi:10.1002/eco.1443.

    Google Scholar 

  • Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference (2nd ed.). New York: Springer.

    Google Scholar 

  • Buss, D. F., Baptista, D. F., Silveira, M. P., Nessimian, J. L., & Dorvillé, F. M. (2002). Influence of water chemistry and environmental degradation on macroinvertebrate assemblages in a river basin in south-east Brazil. Hydrobiologia, 481, 125–136.

    Article  CAS  Google Scholar 

  • Chapman, P. J., Edwards, A. C., & Cresser, M. S. (2001). The nitrogen composition of streams in upland Scotland: some regional and seasonal differences. Science of the Total Environment, 265, 65–83.

    Article  CAS  Google Scholar 

  • Clarke, A., MacNally, R., Bond, N., & Lake, P. S. (2008). Macroinvertebrates in headwater streams: a review. Freshwater Biology, 53(9), 1707–1721.

    Article  Google Scholar 

  • Cline, L. D., Short, R. A., & Ward, J. V. (1982). The influence of highway construction on the macroinvertebrates and epilithic algae of a high mountain stream. Hydrobiologia, 96(2), 149–159.

    Article  Google Scholar 

  • Curtis, C. J., Battarbee, R. W., Monteith, D. T., & Shilland, E. M. (2014). The future of upland water ecosystems of the UK in the 21st century: a synthesis. Ecological Indicators, 37, 412–430.

    Article  Google Scholar 

  • Davies, T. D., Tranter, M., Wigington, P. J., & Eshleman, K. N. (1992). ‘Acidic episodes’ in surface waters in Europe. Journal of Hydrology, 132(1), 25–69.

    Article  CAS  Google Scholar 

  • Dawson, J. J. C., Soulsby, C., Tetzlaff, D., Hrachowitz, M., Dunn, S. M., & Malcolm, I. A. (2008). Influence of hydrology and seasonality on DOC exports from three contrasting upland catchments. Biogeochemistry, 90(1), 93–113.

    Article  Google Scholar 

  • Dawson, J. J. C., Tetzlaff, D., Speed, M., Hrachowitz, M., & Soulsby, C. (2011). Seasonal controls on DOC dynamics in nested upland catchments in NE Scotland. Hydrological Processes, 25(10), 1647–1658.

    Article  CAS  Google Scholar 

  • Di Baldassarre, G., & Montanari, A. (2009). Uncertainty in river discharge observations: a quantitative analysis. Hydrology and Earth System Sciences, 13, 913–921.

    Article  Google Scholar 

  • Drewitt, A. L., & Langston, R. H. W. (2006). Assessing the impacts of wind farms on birds. Ibis, 148(s1), 29–42.

    Article  Google Scholar 

  • Eaton, L. E., & Lenat, D. R. (1991). Comparison of a rapid bioassessment method with North Carolina’s qualitative macroinvertebrate collection method. Journal of the North American Benthological Society, 10, 335–338.

    Article  Google Scholar 

  • Edwards, A. C., Creasey, J., & Cresser, M. S. (1985). Factors influencing nitrogen inputs and outputs in two Scottish upland catchments. Soil Use and Management, 1, 83–88.

    Article  Google Scholar 

  • Ernst, A.G., Baldigo, B.P., Schuler, G.E., Apse, C.D., Carter, J.L., Lester, G.T. (2008). Effects of habitat characteristics and water quality on macroinvertebrate communities along the Neversink River in southeastern New York, 1991–2001: U.S. Geological Survey Scientific Investigations Report 2008–5024.

  • Evans, C. D., Reynolds, B., Hinton, C., Hughes, S., Norris, D., Grant, S., & Williams, B. (2007). Effects of decreasing acid deposition and climate change on acid extremes in an upland stream. Hydrology and Earth System Sciences Discussions, 4(5), 2901–2944.

    Article  Google Scholar 

  • Ferrier, R. C., & Harriman, R. (1990). Pristine, transitional, and acidified catchment studies in Scotland. In B. S. Mason (Ed.), The surface waters acidification programme (pp. 9–18). London: Cambridge University Press.

    Google Scholar 

  • Gomi, T., Sidle, R. C., & Richardson, J. S. (2002). Understanding processes and downstream linkages of headwater systems. BioScience, 52(10), 905–916.

    Article  Google Scholar 

  • Grieve, I., & Gilvear, D. J. (2008). Effects of wind farm construction on concentrations and fluxes of dissolved organic carbon and suspended sediment from peat catchments at Braes of Doune, central Scotland. Mires Peat, 4, 1–11.

    Google Scholar 

  • Growns, I. O., & Davis, J. A. (1994). Effects of forestry activities (clearfelling) on stream macroinvertebrate fauna in south-western Australia. Australian Journal of Marine and Freshwater Research, 45(6), 963–975.

    Article  Google Scholar 

  • Hedrick, L. B., Welsh, S. A., Anderson, J. T., Lin, L.-S., Chen, Y., & Wei, X. (2010). Response of benthic macroinvertebrate communities to highway construction in an Appalachian watershed. Hydrobiologia, 641(1), 115–131.

    Article  Google Scholar 

  • Holden, J., Chapman, P. J., & Labadz, J. C. (2004). Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Progress in Physical Geography, 28(1), 95–123.

    Article  Google Scholar 

  • Hornung, M., Reynolds, B., Stevens, P. A., Neal, C. (1987). Stream acidification resulting from afforestation in the UK: evaluation of causes and possible ameliorative measures. In Forest hydrology and watershed management (Proceedings of the Vancouver Symposium, August 1987), IAHS-AISH publication 167, pp. 65–74.

  • Houser, J. N., Mulholland, P. J., & Maloney, K. O. (2006). Upland disturbance affects headwater stream nutrients and suspended sediments during baseflow and stormflow. Journal of Environmental Quality, 35(1), 352–365.

    Article  CAS  Google Scholar 

  • Hynes, H. B. N. (1975). The stream and its valley. Proceedings of the International Association of Theoretical and Applied Limnology, 19(1).

  • JNCC, Joint Nature Conservation Committee. (2007). Second report by the UK under article 17 on the implementation of the habitats directive from January 2001 to December 2006. Peterborough: JNCC.

    Google Scholar 

  • Kreutzweiser, D. P., & Capell, S. S. (2001). Fine sediment deposition in streams after selective forest harvesting without riparian buffers. Canadian Journal of Forest Research, 31(12), 2134–2142.

    Article  Google Scholar 

  • Kroon, F. J., & Ludwig, J. A. (2010). Response and recovery of fish and invertebrate assemblages following flooding in five tributaries of a sub-tropical river. Marine and Freshwater Research, 61(1), 86–96.

    Article  CAS  Google Scholar 

  • Kunz, T., Arnett, E. B., Cooper, B. M., Erickson, W. P., Larkin, R. P., Mabee, T., Morrison, M. L., Strickland, M. D., & Szewczak, J. M. (2007). Assessing impacts of wind-energy development on nocturnally active birds and bats: a guidance document. The Journal of Wildlife Management, 71(8), 2449–2486.

    Article  Google Scholar 

  • Kuvlesky, W. P., Brennan, L. A., Morrison, M. L., Boydston, K. K., Ballard, B. M., & Bryant, F. C. (2007). Wind energy development and wildlife conservation: challenges and opportunities. The Journal of Wildlife Management, 71(8), 2487–2498.

    Article  Google Scholar 

  • Kwak, T. J., & Waters, T. F. (1997). Trout production dynamics and water quality in Minnesota streams. Transactions of the American Fisheries Society, 126(1), 35–48.

    Article  Google Scholar 

  • Lacroix, G. L. (1985). Survival of eggs and alevins of Atlantic salmon (Salmo salar) in relation to the chemistry of interstitial water in redds in some acidic streams of Atlantic Canada. Canadian Journal of Fisheries and Aquatic Sciences, 42, 292–299.

    Article  CAS  Google Scholar 

  • Lancaster, J., Real, M., Juggins, S., Monteith, D. T., Flower, R. J., & Beaumont, W. R. C. (1996). Monitoring temporal changes in the biology of acid waters. Freshwater Biology, 36(1), 179–201.

    Article  Google Scholar 

  • Lepori, F., Barbieri, A., & Ormerod, S. J. (2003). Effects of episodic acidification on macroinvertebrate assemblages in Swiss alpine streams. Freshwater Biology, 48(10), 1873–1885.

    Article  CAS  Google Scholar 

  • Lindsay, R.A., Bragg, O.M. (2005). Windfarms and blanket peat: a report on the Derrybrien bog slide (2nd edition). University of East London. http://www.uel.ac.uk/erg/documents/Derrybrien.pdf.

  • Lowe, W. H., & Likens, G. E. (2005). Moving headwater streams to the head of the class. BioScience, 55(3), 196–197.

    Article  Google Scholar 

  • Madders, M., & Whitfield, D. P. (2006). Upland raptors and the assessment of wind farm impacts. Ibis, 148(s1), 43–56.

    Article  Google Scholar 

  • Malcolm, I. A., Bacon, P. J., Middlemas, S. J., Fryer, R. J., Shilland, E. M., & Collen, P. (2014). Relationships between hydrochemistry and the presence of juvenile brown trout (Salmo trutta) in headwater streams recovering from acidification. Ecological Indicators, 37(Part B), 351–364.

    Article  CAS  Google Scholar 

  • Martin, W. C., Hornbeck, J. W., Likens, G. E., & Buso, D. C. (2000). Impacts of intensive harvesting on hydrology and nutrient dynamics of northern hardwood forests. Canadian Journal of Fisheries and Aquatic Sciences, 57(s2), 19–29.

    Article  CAS  Google Scholar 

  • McCune, B., Mefford, B.J. (1995). PC-ORD. Multivariate analysis of ecological data. Version 2.0. MJM software design. Gleneden Beach, Oregon.

  • Meyer, J. L., Strayer, D. L., Wallace, B., Eggert, S. L., Helfman, G. S., & Leonard, N. E. (2007). The contribution of headwater streams to biodiversity in river networks. Journal of the American Water Resources Association, 43(1), 86–103.

    Article  Google Scholar 

  • Monteith, D. T., & Evans, C. D. (2005). The United Kingdom acid waters monitoring network: a review of the first 15 years and introduction to the special issue. Environmental Pollution, 137(1), 3–13.

    Article  CAS  Google Scholar 

  • Monteith, D. T., Evans, C. D., Henrys, P. A., Simpson, G. L., & Malcolm, I. A. (2014). Trends in the hydrochemistry of acid-sensitive surface waters in the UK 1988–2008. Ecological Indicators, 37, 287–303.

    Article  CAS  Google Scholar 

  • Moore, R. D., Sutherland, P., Gomi, T., & Dhakal, A. (2005). Thermal regime of a headwater stream within a clear-cut, coastal British Columbia, Canada. Hydrological Processes, 19(13), 2591–2608.

    Article  Google Scholar 

  • Natural Power. (2001). Planning application for the proposed wind farm at Paul’s Hill, Moray. Environmental Statement, 1.

  • Neal, C., Reynolds, B., Smith, C. J., Hill, S., Neal, M., Conway, T., Ryland, G. P., Jeffrey, H., Robson, A. J., & Fisher, R. (1992). The impact of conifer harvesting on stream water pH, alkalinity and aluminium concentrations for the British uplands: an example for an acidic and acid sensitive catchment in mid-Wales. Science of the Total Environment, 126(1), 75–87.

    Article  CAS  Google Scholar 

  • Neal, C., Reynolds, B., Neal, M., Wickham, H., Hill, L., & Williams, B. (2004a). The impact of conifer harvesting on stream water quality: the Afon Hafren, Mid-Wales. Hydrology and Earth System Sciences, 8(3), 503–520.

    Article  CAS  Google Scholar 

  • Neal, C., Reynolds, B., Neal, M., Wickham, H., Hill, L., & Williams, B. (2004b). The water quality of streams draining a plantation forest on gley soils: the Nant Tanllwyth, Plynlimon, Mid-Wales. Hydrology and Earth System Sciences, 8(3), 485–502.

    Article  CAS  Google Scholar 

  • Newcombe, C. P., & MacDonald, D. D. (1991). Effects of suspended sediments on aquatic ecosystems. North American Journal of Fisheries Management, 11(1), 72–82.

    Article  Google Scholar 

  • Ode, P. R., Rehn, A. C., & May, J. T. (2005). A quantitative tool for assessing the integrity of southern coastal California streams. Environmental Management, 35(4), 493–503.

    Article  Google Scholar 

  • Okey, B. W., & Kuzemchak, M. J. (2009). Modeling potential wildlife-wind energy conflict areas. Harrisburg: The Center for Rural Pennsylvania.

    Google Scholar 

  • Parsons, B. G., Watmough, S. A., Dillon, P. J., & Somers, K. M. (2010a). A bioassessment of lakes in the Athabasca Oil Sands Region, Alberta, using benthic macroinvertebrates. Journal of Limnology, 69, 105–117.

    Article  Google Scholar 

  • Parsons, B. G., Watmough, S. A., Dillon, P. J., & Somers, K. M. (2010b). Relationships between lake water chemistry and benthic macroinvertebrates in the Athabasca Oil Sands Region, Alberta. Journal of Limnology, 69, 118–125.

    Article  Google Scholar 

  • Peterson, B. J., Wollheim, W. M., Mulholland, P. J., Webster, J. R., Meyer, J. L., Tank, J. L., Martí, E., Bowden, W. B., Valett, H. M., Hershey, A. E., McDowell, W. H., Dodds, W. K., Hamilton, S. K., Gregory, S., & Morrall, D. D. (2001). Control of nitrogen export from watersheds by headwater streams. Science, 292(5514), 86–90.

    Article  CAS  Google Scholar 

  • Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131–144.

    Article  Google Scholar 

  • Ramchunder, S. J., Brown, L. E., & Holden, J. (2009). Environmental effects of drainage, drain-blocking and prescribed vegetation burning in UK upland peatlands. Progress in Physical Geography, 33(1), 49–79.

    Article  Google Scholar 

  • R Development Core Team (2013). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

  • Renewable UK (2013). UK wind energy database—UKWED. bwea.com. <http://www.bwea.com/ukwed/index.asp>. Accessed 8 Mar 2013.

  • Reuss, J. O., Christophersen, N., & Seip, H. M. (1986). A critique of models for freshwater and soil acidification. Water, Air, and Soil Pollution, 30, 909–930.

    Article  CAS  Google Scholar 

  • Rosemond, A. D., Reice, S. R., Elwood, J. W., & Mulholland, P. J. (1992). The effects of stream acidity on benthic invertebrate communities in the south-eastern United States. Freshwater Biology, 27(2), 193–209.

    Article  CAS  Google Scholar 

  • Scottish Government. (2008). Making Scotland a leader in green energy: framework for the development and deployment of renewables in Scotland. Edinburgh: Scottish Government and FREDS.

    Google Scholar 

  • Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana: Univ. Illinois Press.

    Google Scholar 

  • Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688.

    Article  Google Scholar 

  • Talent Scotland (2013). Onshore wind power in Scotland. < http://www.talentscotland.com/Workers/Industries/Energy/Industry-Overview/Renewable-Energy/Onshore-Wind.aspx>. Accessed 10 May 2013.

  • Tetzlaff, D., Malcolm, I. A., & Soulsby, C. (2007). Influence of forestry, environmental change and climatic variability on the hydrology, hydrochemistry and residence times of upland catchments. Journal of Hydrology, 346, 93–111.

    Article  Google Scholar 

  • Tetzlaff, D., Brewer, M. J., Malcolm, I. A., & Soulsby, C. (2010). Storm flow and baseflow response to reduced acid deposition-using Bayesian compositional analysis in hydrograph separation with changing end members. Hydrological Processes, 24, 2300–2312.

    Article  CAS  Google Scholar 

  • Underwood, A. J. (1992). Beyond BACI: the detection of environmental impacts on populations in the real, but variable, world. Journal of Experimental Marine Biology and Ecology, 161(2), 145–178.

    Article  Google Scholar 

  • Vannote, R. L., Minshall, G. W., Cummings, K. W., Sedall, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37(1), 130–137.

    Article  Google Scholar 

  • Waldron, S., Flowers, H., Arlaud, C., Bryant, C., & McFarlane, S. (2009). The significance of organic carbon and nutrient export from peatland-dominated landscapes subject to disturbance, a stoichiometric perspective. Biogeosciences, 6(3), 363–374.

    Article  CAS  Google Scholar 

  • Watts, G., Battarbee, R. W., Bloomfield, J. P., Crossman, J., Daccache, A., Durance, I., Elliott, J. A., Garner, G., Hannaford, J., & Hannah, D. M. (2015). Climate change and water in the UK—past changes and future prospects. Progress in Physical Geography, 39(1), 6–28. doi:10.1177/0309133314542957.

    Article  Google Scholar 

  • Webb, J. H., Gibbins, C. N., Moir, H., & Soulsby, C. (2001). Flow requirements of spawning Atlantic salmon in an upland stream: implications for water-resource management. Water Environment Journal, 15(1), 1–8.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Pauls Hill Wind Ltd for supporting the monitoring programme. The authors would like to thank Ballindalloch and Tulchan Estates for access to the sampling sites and to all members of the MS Freshwater Environment Group who collected and identified invertebrate samples and provided expert hydrochemical analysis. The provision of the discharge data from the Scottish Environment Protection Agency (SEPA) is gratefully acknowledged. We are also grateful to the staff from the Spey Foundation and Spey Fishery Board for their assistance, in particular Steve Burns (Spey Foundation) for his dedication to collecting water samples in all weathers.

Ethics approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Millidine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Millidine, K.J., Malcolm, I.A., McCartney, A. et al. The influence of wind farm development on the hydrochemistry and ecology of an upland stream. Environ Monit Assess 187, 518 (2015). https://doi.org/10.1007/s10661-015-4750-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4750-9

Keywords

Navigation