Skip to main content
Log in

Abutilon indicum L.: a prospective weed for phytoremediation

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study was aimed to determine the uptake and accumulation potential of a weed (Abutilon indicum L.) for phytoremediation of soil contaminated with cadmium. Plants were grown in soil spiked with 0, 2.5, 5, 10, 15, 20, 25 mg/kg Cd, individually. Plants sample (root and shoot) were analyzed for Cd content at 30, 60, and 90 days and accumulation trends were characterized. A steady increase in Cd accumulation with increasing metal concentration and exposure period was observed for all treatments. Accumulation of Cd in roots was found to be 4.3–7.7 times higher than that of shoots. Statistically significant difference (P ≤ 0.001) in mean metal content in root and shoot at successive days of study was recorded. Effect of Cd on growth and physiology was also evaluated. At higher Cd levels, root and shoot length and biomass of test plant were reduced significantly. Although, growth was delayed initially, it was comparable to control at the end of the study. Chlorophyll and proline content declined with the increase in Cd concentration at 30 and 60 days after treatment. However, at 90 days, values were more or less comparable to the control values showing the adaptability of test plant in Cd contamination. Considering the accumulation ability, BCF >1 (bioconcentration factor) and TF <1 (translocation factor) established A. indicum as a potential candidate plant for phytoremediation. Hence, phytoremediation employing indigenous weed species like A. indicum can be an ecologically viable option for sustainable and cost-effective management of heavy metal-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adriano, D. (2001). Cadmium. In: (Eds.), Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals, 2nd edition (pp. 264–314). New York-Berlin-Heidelberg: Springer-Verlag.

  • Agrawal, V., & Sharma, K. (2006). Phytotoxic effects of Cu, Zn, Cd and Pb on in vitro regeneration and concomitant protein changes in Holarrhena antidysentrica. Biologia Plantarum, 50, 307–310.

    Article  CAS  Google Scholar 

  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1–15.

    Article  CAS  Google Scholar 

  • Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126.

    CAS  Google Scholar 

  • Baker, A. J. M., & Walker, P. I. (1990). Ecophysiology of metal uptake by tolerant plants. In A. J. Shaw (Ed.), Heavy metal tolerance in plants evolutionary aspects (pp. 155–178). CRC Press: Boca Raton, FL.

    Google Scholar 

  • Banerjee, G., & Sarker, S. (1997). The role of Salvinia rotundifolia in scavenging aquatic Pb (II) pollution: a case study. Bioprocess Engineering, 17, 295–260.

    CAS  Google Scholar 

  • Bates, L. S., Waldren, R. D., & Teare, T. D. (1973). Rapid determination of free proline for water stress studies. Plant and soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • D’Souza, R., Varun, M., Masih, J., & Paul, M. S. (2010). Identification of Calotropis procera L. as a potential phytoaccumulator of heavy metals from contaminated soils in urban North Central India. Journal of Hazardous Material, 184, 457–464.

    Article  Google Scholar 

  • Fodor, F., Cseh, E., Varga, A., & Zaray, G. (1998). Lead uptake, distribution and remobilization in cucumber. Journal of Plant Nutrition, 21, 1363–1373.

    Article  CAS  Google Scholar 

  • Girdhar, M., Sharma, N. R., Rehman, H., Kumar, A., & Mohan, A. (2014). Comparative assessment for hyperaccumulatory and phytoremediation capability of three wild weeds. Biotechnology, 4(6), 579–589. 3.

    Google Scholar 

  • Hasan, S. H., Talat, M., & Rai, S. (2007). Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichhornia crassipes). Bioresource Technology, 98, 918–928.

    Article  CAS  Google Scholar 

  • Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments. Plant Signaling and Behavior, 7(11), 1456–1466.

    Article  CAS  Google Scholar 

  • Igwe, J. C., & Abia, A. A. (2006). A bio-separation process for removing heavy metals from waste water using biosorbents. African Journal of Biotechnology, 5, 1167–1179.

    CAS  Google Scholar 

  • Ji, P., Song, Y., Sun, T., Liu, Y., Cao, X., Xu, D., Yang, X., & McRae, T. (2011). In-situ cadmium phytoremediation using Solanum nigrum L.: the bio-accumulation characteristics trail. International Journal of Phytoremediation, 13, 1014–1023.

    Article  CAS  Google Scholar 

  • Jiang, H. M., Yang, J. C., & Zhang, J. F. (2007). Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environmental pollution, 147, 750–756.

    Article  CAS  Google Scholar 

  • Kadukova, J., Papadontonakis, N., Naxakis, G., & Kalogerakis, N. (2004). Lead accumulation by the salt-tolerant plant Atriplex halimus. In C. Moutzouris, C. Christodoulatos, D. Dermatas, A. Koutsospyros, C. Skanavis, & A. Stamou (Eds.), Proceedings of the International Conference on Protection and Restoration of the Environment VII June 28–July 1. Greece: Mykonos.

    Google Scholar 

  • Kastori, R., Petrovic, M., & Petrovic, N. (1992). Effect of excess lead, cadmium, copper and zinc on water relations in sunflower. Journal of Plant Nutrition, 15, 2427–2439.

    Article  CAS  Google Scholar 

  • Küpper, H., Lombi, E., Zhao, F. J., & McGrath, S. P. (2000). Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta, 212, 75–84.

    Article  Google Scholar 

  • Lasat, M. M. (2002). Phytoextraction of toxic metals: a review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.

    Article  CAS  Google Scholar 

  • Lum, A. F., Ngwa, E. S., Chikoye, D., & Suh, C. E. (2014). Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon. International Journal of Phytoremediation, 16(3), 302–319.

    Article  CAS  Google Scholar 

  • Lutts, S., Lefère, I., Delpéré, C., Kivits, S., Dechamps, C., Robledo, A., & Correal, E. (2004). Heavy metal accumulation by the halophyte species Mediterranean saltbush. Journal of Environmental Quality, 33, 1271–1279.

    Article  CAS  Google Scholar 

  • Malavolta, E. (1994). Fertilizantes e seu impacto ambiental: micronutrientes e metais pesados—mitos, mistificação e fatos. Petroquímica, São Paulo.p 153.

  • Malone, C., Koeppe, D. E., & Miller, R. J. (1974). Localization of lead accumulated by corn plants. Plant Physiology, 53, 388–394.

    Article  CAS  Google Scholar 

  • Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environment Health Perspective, 116(3), 278–283.

    Article  CAS  Google Scholar 

  • Miretzky, P., Saralegui, A., & Fernandez, C. A. (2004). Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere, 57(8), 997–1005.

    Article  CAS  Google Scholar 

  • Miyadate, H., Adachi, S., Hiraizumi, A., Tezuka, K., Nakazawa, N., Kawamoto, T., Katou, K., Kodama, I., Sakurai, K., Takahashi, H., Satoh-Nagasawa, N., Watanabe, A., Fujimura, T., & Akagi, H. (2011). OsHMA3, a P18-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytologist, 189, 190–199.

    Article  CAS  Google Scholar 

  • Mohan, B. S., & Hosetti, B. B. (2006). Phytotoxicity of cadmium on the physiological dynamics of Salvinia natans L. grown in macrophyte ponds. Journal of Environmental Biology, 27, 701–704.

    CAS  Google Scholar 

  • Ouzounidou, G. (1995). Cu-ions mediated changes in growth, chlorophyll and other ion contents in a Cu tolerant Koeleria splendens. Biologia Plantarum, 37, 71–79.

    Article  CAS  Google Scholar 

  • Pahlasson, A. M. B. (1989). Toxicity of heavy metals (Zn, Cd, Cu, Pb) to vascular plants. Water Air and Soil Pollution, 47, 278–319.

    Google Scholar 

  • Panda, S. K., & Choudhary, S. (2005). Chromium stress in plants. Brazilian Journal of Plant Physiology, 17(1), 19–102.

    Article  Google Scholar 

  • Pandey, S., Gupta, K., & Mukherjee, A. K. (2007). Impact of cadmium and lead on Catharanthus roseus—a phytoremediation study. Journal of Environmental Biology, 28, 655–662.

    CAS  Google Scholar 

  • Peles, J. D., Brewer, S. R., & Barrett, G. W. (1998). Heavy metal accumulation by old-field plant species during recovery of sludge-treated ecosystems. American Midland Naturalist, 140, 245–251.

    Article  Google Scholar 

  • Phetsombat, S., Kruatrachue, M., Pokethitiyook, P., & Upatham, S. (2006). Toxicity and bioaccumulation of cadmium and lead in Salvinia cucullata. Journal of Environmental Biology, 27(4), 645–652.

    CAS  Google Scholar 

  • Popova, L. P., Maslenkova, L. T., Ivanova, A. P., & Stoinova, Z. (2012). Role of salicylic acid in alleviating heavy metal stress. In P. Ahmad & M. N. V. Prasad (Eds.), Environmental adaptations and stress tolerance of plants in the era of climate change (pp. 441–466). New York: Springer.

    Google Scholar 

  • Poschenrieder, C., Gunes, B., & Barcelo, J. (1989). Influence of cadmium on water relation, stomatal resistance, and abscisic acid content in expanding bean leaves. Plant Physiology, 90, 1365–1371.

    Article  CAS  Google Scholar 

  • Prasad, M. N. V. (1999). Metallothioneins and metal binding complexes in plants. In M. N. V. Prasad & J. Hagermeyer (Eds.), Heavy metal stress in plants: from molecules to ecosystems (pp. 51–72). Berlin: Springer Verlag.

    Chapter  Google Scholar 

  • Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it, and what makes them so interesting? Plant Science, 180, 169–181.

    Article  CAS  Google Scholar 

  • Roy, D., Bhumnia, A., Basu, N., & Banerjee, S. K. (1992). Effect of NaCl salinity on metabolism of proline in salt sensitive and salt-resistant cultivars of rice. Biologia Plantarum, 34, 159–162.

    Article  CAS  Google Scholar 

  • Salt, D. E., & Kramer, U. (2000). Mechanisms of metal hyperaccumulation in plants. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: using plants to clean-up the environment (pp. 231–246). New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Salt, D. E., Prince, R. C., Pickering, I. J., & Raskin, I. (1995). Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology, 109, 1427–1433.

    CAS  Google Scholar 

  • Schat, H., Sharma, S. S., & Vooijs, R. (1997). Heavy metal-induced accumulation of free proline in a metal-tolerant and a non-tolerant ecotype of Silene vulgaris. Physiology of Plant, 101(3), 477–482.

    Article  CAS  Google Scholar 

  • Seregin, T. V., & Ivanov, V. B. (2001). Physiological aspects of toxin action of cadmium and lead on high plants. Plant Physiology, 48, 606–630.

    Google Scholar 

  • Shi, G., Liu, C., Cui, M., Ma, Y., & Cai, Q. (2012). Cadmium tolerance and bioaccumulation of 18 hemp accessions. Applied Biochemistry and Biotechnology, 168(1), 163–173.

    Article  CAS  Google Scholar 

  • Singh, P. K., & Tewari, R. K. (2003). Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. Journal of Environmental Biology, 24, 107–112.

    CAS  Google Scholar 

  • Talanova, V. V., Titov, A. F., & Boeva, N. P. (2000). Effect of increasing concentrations of lead and cadmium on cucumber seedlings. Biologia Plantarum, 43, 441–444.

    Article  CAS  Google Scholar 

  • Uraguchi, S., Watanabe, I., Yoshitomi, A., Kiyono, M., & Kuno, K. (2006). Characteristics of cadmium accumulation and tolerance in novel Cd-accumulating crops, Avena strigosa and Crotalaria juncea. Journal of Experimental Botany, 57(12), 2955–2965.

    Article  CAS  Google Scholar 

  • Van Assche, F., & Clijesters, H. (1990). Effects of metals on enzyme activity in plants. Plant Cell Environment, 13, 195–206.

    Article  Google Scholar 

  • Varun, M., D’Souza, R., Kumar, D., & Paul, M. S. (2011). Bioassay as monitoring system for lead phytoremediation through Crinum asiaticum L. Environmental Monitoring and Assessment, 178, 373–381.

    Article  CAS  Google Scholar 

  • Varun, M., D’Souza, R., Pratas, J., & Paul, M. S. (2012). Metal contamination of soils and plants associated with the glass industry in North Central India: prospects of phytoremediation. Environmental Science and Pollution Research, 19(1), 269–281.

    Article  CAS  Google Scholar 

  • Wei, S., & Twardowska, I. (2013). Main rhizosphere characteristics of the Cd hyperaccumulator Rorippa globosa (Turcz.) Thell. Plant Soil, 372(1–2), 669–681.

    Article  CAS  Google Scholar 

  • Zhu, Y. L., Zayed, A. M., Qian, J. H., Souza, M., & Terry, N. (1999). Phytoaccumulation of trace elements by wetland plants: water hyacinth. Journal of Environmental Quality, 28, 339–344.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the University Grants Commission for providing financial support by sanctioning the Post Doctoral Fellowship No. F./PDFSS201415SCUTT8854.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Varun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varun, M., Jaggi, D., D’Souza, R. et al. Abutilon indicum L.: a prospective weed for phytoremediation. Environ Monit Assess 187, 527 (2015). https://doi.org/10.1007/s10661-015-4748-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4748-3

Keywords

Navigation