Skip to main content
Log in

Spatial variability of organic layer thickness and carbon stocks in mature boreal forest stands—implications and suggestions for sampling designs

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Accurate field measurements from inventories across fine spatial scales are critical to improve sampling designs and to increase the precision of forest C cycling modeling. By studying soils undisturbed from active forest management, this paper gives a unique insight in the naturally occurring variability of organic layer C and provides valuable references against which subsequent and future sampling schemes can be evaluated. We found that the organic layer C stocks displayed great short-range variability with spatial autocorrelation distances ranging from 0.86 up to 2.85 m. When spatial autocorrelations are known, we show that a minimum of 20 inventory samples separated by ∼5 m is needed to determine the organic layer C stock with a precision of ±0.5 kg C m−2. Our data also demonstrates a strong relationship between the organic layer C stock and horizon thickness (R 2 ranging from 0.58 to 0.82). This relationship suggests that relatively inexpensive measurements of horizon thickness can supplement soil C sampling, by reducing the number of soil samples collected, or to enhance the spatial resolution of organic layer C mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ågren, G., Hyvönen, R., & Nilsson, T. (2007). Are Swedish forest soils sinks or sources for CO2—model analyses based on forest inventory data. Biogeochemistry, 82(3), 217–227.

    Article  Google Scholar 

  • Atkinson, P. M., Webster, R., & Curran, P. J. (1992). Cokriging with ground-based radiometry. Remote Sensing of Environment, 41(1), 45–60.

    Article  Google Scholar 

  • Baritz, R., Seufert, G., Montanarella, L., & Van Ranst, E. (2010). Carbon concentrations and stocks in forest soils of Europe. Forest Ecology and Management, 260(3), 262–277.

    Article  Google Scholar 

  • Bens, O., Buczko, U., Sieber, S., & Hüttl, R. F. (2006). Spatial variability of O layer thickness and humus forms under different pine beech-forest transformation stages in NE Germany. Journal of Plant Nutrition and Soil Science, 169(1), 5–15.

    Article  CAS  Google Scholar 

  • Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43–69.

    Article  Google Scholar 

  • Binkley, D., & Fisher, R. (2012). Ecology and management of forest soils. New York: Wiley.

    Google Scholar 

  • Birdsey, R. (2004). Data gaps for monitoring forest carbon in the United States: an inventory perspective. Environmental Management, 33(1), S1–S8.

    Article  Google Scholar 

  • Block, R., Van Rees, K., & Pennock, D. (2002). Quantifying harvesting impacts using soil compaction and disturbance regimes at a landscape scale. Soil Science Society of America Journal, 66(5), 1669–1676.

    Article  CAS  Google Scholar 

  • Borcard, D., & Legendre, P. (2012). Is the Mantel correlogram powerful enough to be useful in ecological analysis? A simulation study. Ecology, 93(6), 1473–1481.

    Article  Google Scholar 

  • Cajander, A.K. (1926). The theory of forest types. Printing Office of Society for the Finnish Literature.

  • Cajander, A.K. (1949). Forest types and their significance. Suomen metsätieteellinen seura.

  • Callesen, I., Liski, J., Raulund-Rasmussen, K., Olsson, M. T., Tau-Strand, L., Vesterdal, L., & Westman, C. J. (2003). Soil carbon stores in Nordic well-drained forest soils—relationships with climate and texture class. Global Change Biology, 9(3), 358–370.

    Article  Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Turco, R. F., & Konopka, A. E. (1994). Field scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58, 1501–1511.

    Article  Google Scholar 

  • Cliff, A. D., & Ord, J. K. (1981). Spatial processes: models & applications. London: Pion.

    Google Scholar 

  • Conant, R. T., Ogle, S. M., Paul, E. A., & Paustian, K. (2011). Measuring and monitoring soil organic carbon stocks in agricultural lands for climate mitigation. Frontiers in Ecology and the Environment, 9, 169–173.

    Article  Google Scholar 

  • Cressie, N. (1985). Fitting variogram models by weighted least squares. Mathematical Geology, 17(5), 563–586.

    Article  Google Scholar 

  • de Gruijter, J. J. (2006). Sampling for natural resource monitoring. Berlin: Springer.

    Book  Google Scholar 

  • Don, A., Schumacher, J., Scherer-Lorenzen, M., Scholten, T., & Schulze, E.-D. (2007). Spatial and vertical variation of soil carbon at two grassland sites—implications for measuring soil carbon stocks. Geoderma, 141(3–4), 272–282.

    Article  CAS  Google Scholar 

  • Dunn, O. J. (1964). Multiple comparisons using rank sums. Technometrics, 6(3), 241–252.

    Article  Google Scholar 

  • Finer, L., Mannerkoski, H., Piirainen, S., & Starr, M. (2003). Carbon and nitrogen pools in an old-growth, Norway spruce mixed forest in eastern Finland and changes associated with clear-cutting. Forest Ecology and Management, 174(1), 51–63.

    Article  Google Scholar 

  • Games, P. A., & Howell, J. F. (1976). Pairwise multiple comparison procedures with unequal N’s and/or variances: a Monte Carlo study. Journal of Educational and Behavioral Statistics, 1(2), 113–125.

    Article  Google Scholar 

  • Goovaerts, P. (1998). Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biology and Fertility of Soils, 27(4), 315–334.

    Article  CAS  Google Scholar 

  • Goovaerts, P. (1999). Geostatistics in soil science: state-of-the-art and perspectives. Geoderma, 89(1–2), 1–45.

    Article  Google Scholar 

  • Grubbs, F. E. (1969). Procedures for detecting outlying observations in samples. Technometrics, 11(1), 1–21.

    Article  Google Scholar 

  • Häkkinen, M., Heikkinen, J., & Mäkipää, R. (2011). Soil carbon stock increases in the organic layer of boreal middle-aged stands. Biogeosciences Discussions, 8(1), 1015–1042.

    Article  Google Scholar 

  • Hansson, K., Olsson, B. A., Olsson, M., Johansson, U., & Kleja, D. B. (2011). Differences in soil properties in adjacent stands of Scots pine, Norway spruce and silver birch in SW Sweden. Forest Ecology and Management, 262(3), 522–530.

    Article  Google Scholar 

  • Hedde, M., Aubert, M., Decaëns, T., & Bureau, F. (2008). Dynamics of soil carbon in a beechwood chronosequence forest. Forest Ecology and Management, 255(1), 193–202.

    Article  Google Scholar 

  • Heim, A., Wehrli, L., Eugster, W., & Schmidt, M. W. I. (2009). Effects of sampling design on the probability to detect soil carbon stock changes at the Swiss CarboEurope site Lägeren. Geoderma, 149(3–4), 347–354.

    Article  CAS  Google Scholar 

  • Hilli, S., Stark, S., & Derome, J. (2008). Carbon quality and stocks in organic horizons in boreal forest soils. Ecosystems, 11(2), 270–282.

    Article  CAS  Google Scholar 

  • Hilli, S., Stark, S., & Derome, J. (2010). Litter decomposition rates in relation to litter stocks in boreal coniferous forests along climatic and soil fertility gradients. Applied Soil Ecology, 46(2), 200–208.

    Article  Google Scholar 

  • Hogberg, P., Nordgren, A., Buchmann, N., Taylor, A. F. S., Ekblad, A., Hogberg, M. N., Nyberg, G., Ottosson-Lofvenius, M., & Read, D. J. (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411(6839), 789–792.

    Article  CAS  Google Scholar 

  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2), 65–70.

    Google Scholar 

  • Hunt, S. L., Gordon, A. M., & Morris, D. M. (2010). Carbon stocks in managed conifer forests in northern Ontario, Canada. Silva Fennica, 44(4), 563–582.

    Article  Google Scholar 

  • Huntington, T. G., Johnson, C. E., Johnson, A. H., Siccama, T. G., & Ryan, D. F. (1989). Carbon, organic matter, and bulk density relationships in a forested Spodosol. Soil Science, 148(5), 380–386.

    Article  CAS  Google Scholar 

  • Jandl, R., Rodeghiero, M., Martinez, C., Cotrufo, M. F., Bampa, F., van Wesemael, B., Harrison, R. B., Guerrini, I. A., Richter, D., Jr., Rustad, L., Lorenz, K., Chabbi, A., & Miglietta, F. (2014). Current status, uncertainty and future needs in soil organic carbon monitoring. Science of the Total Environment, 468–469, 376–383.

    Article  Google Scholar 

  • Jungqvist, G., Oni, S. K., Teutschbein, C., & Futter, M. N. (2014). Effect of climate change on soil temperature in Swedish boreal forests. PLoS ONE, 9(4), e93957.

    Article  Google Scholar 

  • Kolari, P., Pumpanen, J., Rannik, Ü., Ilvesniemi, H., Hari, P., & Berninger, F. (2004). Carbon balance of different aged Scots pine forests in Southern Finland. Global Change Biology, 10(7), 1106–1119.

    Article  Google Scholar 

  • Kolka, R., Steber, A., Brooks, K., Perry, C. H., & Powers, M. (2012). Relationships between soil compaction and harvest season, soil texture, and landscape position for aspen forests. Northern Journal of Applied Forestry, 29(1), 21–25.

    Article  Google Scholar 

  • Koven, C. D. (2013). Boreal carbon loss due to poleward shift in low-carbon ecosystems. Nature Geoscience, 6(6), 452–456.

    Article  CAS  Google Scholar 

  • Kulmatiski, A., & Beard, K. H. (2004). Reducing sampler error in soil research. Soil Biology and Biochemistry, 36(2), 383–385.

    Article  CAS  Google Scholar 

  • Kunkel, M. L., Flores, A. N., Smith, T. J., McNamara, J. P., & Benner, S. G. (2011). A simplified approach for estimating soil carbon and nitrogen stocks in semi-arid complex terrain. Geoderma, 165(1), 1–11.

    Article  CAS  Google Scholar 

  • Kurz, W. A., Stinson, G., & Rampley, G. (2008). Could increased boreal forest ecosystem productivity offset carbon losses from increased disturbances? Philosophical Transactions of the Royal Society, B: Biological Sciences, 363(1501), 2259–2268.

    Article  Google Scholar 

  • Lark, R. M. (2009). Estimating the regional mean status and change of soil properties: two distinct objectives for soil survey. European Journal of Soil Science, 60(5), 748–756.

    Article  Google Scholar 

  • Legendre, P., & Fortin, M. J. (1989). Spatial pattern and ecological analysis. Vegetatio, 80(2), 107–138.

    Article  Google Scholar 

  • Lie, M. H., Arup, U., Grytnes, J.-A., & Ohlson, M. (2009). The importance of host tree age, size and growth rate as determinants of epiphytic lichen diversity in boreal spruce forests. Biodiversity and Conservation, 18(13), 3579–3596.

    Article  Google Scholar 

  • Lie, M. H., Josefsson, T., Storaunet, K. O., & Ohlson, M. (2012). A refined view on the “Green lie”: forest structure and composition succeeding early twentieth century selective logging in SE Norway. Scandinavian Journal of Forest Research, 27(3), 270–284.

    Article  Google Scholar 

  • Lindner, M., & Karjalainen, T. (2007). Carbon inventory methods and carbon mitigation potentials of forests in Europe: a short review of recent progress. European Journal of Forest Research, 126(2), 149–156.

    Article  Google Scholar 

  • Liski, J. (1995). Variation in soil organic carbon and thickness of soil horizons within a boreal forest stand—effect of trees and implications for sampling. Silva Fennica, 29(4), 255–266.

    Article  Google Scholar 

  • Liski, J., & Westman, C. J. (1995). Density of organic carbon in soil at coniferous forest sites in southern Finland. Biogeochemistry, 29(3), 183–197.

    Article  CAS  Google Scholar 

  • Liski, J., Perruchoud, D., & Karjalainen, T. (2002). Increasing carbon stocks in the forest soils of western Europe. Forest Ecology and Management, 169(1–2), 159–175.

    Article  Google Scholar 

  • Lundström, U. S., van Breemen, N., & Bain, D. (2000). The podzolization process. A review. Geoderma, 94(2–4), 91–107.

    Article  Google Scholar 

  • Mäkipää, R., Häkkinen, M., Muukkonen, P., & Peltoniemi, M. (2008). The costs of monitoring changes in forest soil carbon stocks. Boreal Environment Research, 13(Suppl. B), 120–130.

    Google Scholar 

  • Malhi, Y., Baldocchi, D. D., & Jarvis, P. G. (1999). The carbon balance of tropical, temperate and boreal forests. Plant, Cell & Environment, 22(6), 715–740.

    Article  CAS  Google Scholar 

  • Marchant, B. P., & Lark, R. M. (2006). Adaptive sampling and reconnaissance surveys for geostatistical mapping of the soil. European Journal of Soil Science, 57(6), 831–845.

    Article  Google Scholar 

  • Marty, C., Houle, D., & Gagnon, C. (2015). Variation in stocks and distribution of organic C in soils across 21 eastern Canadian temperate and boreal forests. Forest Ecology and Management, 345, 29–38.

    Article  Google Scholar 

  • McBratney, A. B., & Webster, R. (1983). Optimal interpolation and isarithmic mapping of soil properties. Journal of Soil Science, 34(1), 137–162.

    Article  Google Scholar 

  • McBratney, A. B., Webster, R., & Burgess, T. M. (1981). The design of optimal sampling schemes for local estimation and mapping of regionalized variables—I. Theory and method. Computers & Geosciences, 7(4), 331–334.

    Article  Google Scholar 

  • Mueller, T., & Pierce, F. (2003). Soil carbon maps: enhancing spatial estimates with simple terrain attributes at multiple scales. Soil Science Society of America Journal, 67(1), 258–267.

    Article  CAS  Google Scholar 

  • Mueller, K., Eissenstat, D., Hobbie, S., Oleksyn, J., Jagodzinski, A., Reich, P., Chadwick, O., & Chorover, J. (2012). Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry, 111(1–3), 601–614.

    Article  CAS  Google Scholar 

  • Muir, A. (1961). The podzol and podzolic soils. In A. G. Norman (Ed.), Advances in agronomy (pp. 1–56). New York: Academic.

    Google Scholar 

  • Muukkonen, P., Häkkinen, M., & Mäkipää, R. (2009). Spatial variation in soil carbon in the organic layer of managed boreal forest soil—implications for sampling design. Environmental Monitoring and Assessment, 158(1), 67–76.

    Article  CAS  Google Scholar 

  • Nabuurs, G. J., Masera, O., Andrasko, K., Benitez-Ponce, P., Boer, R., Dutschke, M., Elsiddig, E., Ford-Robertson, J., Frumhoff, P., Karjalainen, T., Krankina, O., Kurz, W. A., Matsumoto, M., Oyhantcabal, W., Ravindranath, N. H., Sanchez, M. J. S., & Zhang, X. (2007). Forestry. In B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Meyer (Eds.), Climate change 2007: Mitigation. Contribution of Working Group III to the fourth assessment report of the Intergovernmental Panel on Climate Change (pp. 541–584). Cambridge: Cambridge University Press.

    Google Scholar 

  • Nielsen, A., Totland, Ø., & Ohlson, M. (2007). The effect of forest management operations on population performance of Vaccinium myrtillus on a landscape-scale. Basic and Applied Ecology, 8(3), 231–241.

    Article  CAS  Google Scholar 

  • Odeh, I. O., McBratney, A., & Chittleborough, D. (1995). Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma, 67(3), 215–226.

    Article  Google Scholar 

  • Olsson, M. T., Erlandsson, M., Lundin, L., Nilsson, T., Nilsson, A., & Stendahl, J. (2009). Organic carbon stocks in Swedish Podzol soils in relation to soil hydrology and other site characteristics. Silva Fennica, 43(2), 209–222.

    Article  Google Scholar 

  • Ortiz, C. A., Liski, J., Gärdenäs, A. I., Lehtonen, A., Lundblad, M., Stendahl, J., Ågren, G. I., & Karltun, E. (2013). Soil organic carbon stock changes in Swedish forest soils—a comparison of uncertainties and their sources through a national inventory and two simulation models. Ecological Modelling, 251, 221–231.

    Article  CAS  Google Scholar 

  • Palviainen, M., Finér, L., Kurka, A. M., Mannerkoski, H., Piirainen, S., & Starr, M. (2004). Decomposition and nutrient release from logging residues after clear-cutting of mixed boreal forest. Plant and Soil, 263(1), 53–67.

    Article  CAS  Google Scholar 

  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–993.

    Article  CAS  Google Scholar 

  • Peltoniemi, M., Mäkipää, R., Liski, J., & Tamminen, P. (2004). Changes in soil carbon with stand age—an evaluation of a modelling method with empirical data. Global Change Biology, 10(12), 2078–2091.

    Article  Google Scholar 

  • Penne, C., Ahrends, B., Deurer, M., & Böttcher, J. (2010). The impact of the canopy structure on the spatial variability in forest floor carbon stocks. Geoderma, 158(3–4), 282–297.

    Article  CAS  Google Scholar 

  • Post, W. M., Izaurralde, R. C., Mann, L. K., & Bliss, N. (2001). Monitoring and verifying changes of organic carbon in soil. Climatic Change, 51(1), 73–99.

    Article  Google Scholar 

  • R Core Team. (2013). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution, 43(1), 223–225.

    Article  Google Scholar 

  • Rossi, J., Govaerts, A., De Vos, B., Verbist, B., Vervoort, A., Poesen, J., Muys, B., & Deckers, J. (2009). Spatial structures of soil organic carbon in tropical forests—a case study of southeastern Tanzania. Catena, 77(1), 19–27.

    Article  CAS  Google Scholar 

  • Schöning, I., Totsche, K. U., & Kögel-Knabner, I. (2006). Small scale spatial variability of organic carbon stocks in litter and solum of a forested Luvisol. Geoderma, 136(3–4), 631–642.

    Article  Google Scholar 

  • Schulp, C. J. E., Nabuurs, G. J., Verburg, P. H., & de Waal, R. W. (2008). Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecology and Management, 256(3), 482–490.

    Article  Google Scholar 

  • Seibert, J., Stendahl, J., & Sørensen, R. (2007). Topographical influences on soil properties in boreal forests. Geoderma, 141(1–2), 139–148.

    Article  CAS  Google Scholar 

  • Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611.

    Article  Google Scholar 

  • Simbahan, G. C., Dobermann, A., Goovaerts, P., Ping, J., & Haddix, M. L. (2006). Fine-resolution mapping of soil organic carbon based on multivariate secondary data. Geoderma, 132(3–4), 471–489.

    Article  CAS  Google Scholar 

  • Ståhl, G., Boström, B., Lindkvist, H., Lindroth, A., Nilsson, J., & Olsson, M. (2004). Methodological options for quantifying changes in carbon pools in Swedish forests. Studia Forestalia Suecica, 214, 1–46.

    Google Scholar 

  • Stendahl, J., Johansson, M., Eriksson, E., & Langvall, O. (2010). Soil organic carbon in Swedish spruce and pine forests—differences in stock levels and regional patterns. Silva Fennica, 44(1), 5–21.

    Article  Google Scholar 

  • Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., Courcelles, V. R., Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., Lehmann, J., O’Donnell, A. G., Parton, W. J., Whitehead, D., & Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164, 80–99.

    Article  CAS  Google Scholar 

  • Thompson, J. A., & Kolka, R. K. (2005). Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling. Soil Science Society of America Journal, 69(4), 1086–1093.

    Article  CAS  Google Scholar 

  • van Groenigen, J. W. (2000). The influence of variogram parameters on optimal sampling schemes for mapping by kriging. Geoderma, 97(3–4), 223–236.

    Article  Google Scholar 

  • van Groenigen, J. W., Siderius, W., & Stein, A. (1999). Constrained optimisation of soil sampling for minimisation of the kriging variance. Geoderma, 87(3–4), 239–259.

    Article  Google Scholar 

  • VandenBygaart, A. J., Gregorich, E. G., Angers, D. A., & McConkey, B. G. (2007). Assessment of the lateral and vertical variability of soil organic carbon. Canadian Journal of Soil Science, 87(4), 433–444.

    Article  CAS  Google Scholar 

  • Vesterdal, L., Clarke, N., Sigurdsson, B. D., & Gundersen, P. (2013). Do tree species influence soil carbon stocks in temperate and boreal forests? Forest Ecology and Management, 309, 4–18.

    Article  Google Scholar 

  • Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists. Chichester: Wiley.

    Google Scholar 

  • Worsham, L., Markewitz, D., Nibbelink, N. P., & West, L. T. (2012). A comparison of three field sampling methods to estimate soil carbon content. Forest Science, 58(5), 513–522.

    Article  Google Scholar 

Download references

Acknowledgments

This paper is a contribution to the Norwegian centennial chair program, a collaboration between the University of Minnesota and the Norwegian University of Life Sciences (UMB). The study was cofounded by the Norwegian University of Life Sciences, Fulbright Foundation, and Torske Klubben Minneapolis. We would like to thank Fritzøe Skoger for allowing us to use their property for this investigation. Further, we would like thank Dr. Marit Lie (UMB), Dr. Anders Nilsen (UMB), Monica Slåttum (UMB), and Malin Pilstrøm (UMB) for their assistance in the collection of data. Finally, we would like express our gratitude to Dr. Randy Kolka (USDA Forest Service), Dr. Rebecca Montgomery (University of Minnesota), and two anonymous reviewers who provided thoughtful feedback which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terje Kristensen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kristensen, T., Ohlson, M., Bolstad, P. et al. Spatial variability of organic layer thickness and carbon stocks in mature boreal forest stands—implications and suggestions for sampling designs. Environ Monit Assess 187, 521 (2015). https://doi.org/10.1007/s10661-015-4741-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4741-x

Keywords

Navigation