TMDL for phosphorus and contributing factors in subtropical watersheds of southern China

Abstract

Water eutrophication, particularly that caused by phosphorus runoff, is of major concern in China due to the serious threats it poses to watershed environments. We investigated one forested and nine agricultural watersheds with areas of 9–5212 ha in a hilly region of Hunan Province in a subtropical region of southern China from 2010 to 2012 to study total phosphorus (TP) loads and contributing factors. The annual TP loads varied from 35.7 to 222.1 kg P km−2 year−1 among the different watersheds, with the rainy season of spring and summer accounting for 56.3–82.0 % of TP loss. The highest total maximum daily load (TMDL, 0.5 kg P km−2 day−1) and existing exported daily TP loads (DTPL, 1.8 kg P km−2 day−1) were observed under high flow and moist flow conditions in the ten watersheds. However, the target daily reduction ratios for the DTPLs to reach the water quality standard of 0.05 mg P L−1 varied little with flow condition in the stream but depended on the type of watershed, i.e., <50, <80, and 80–90 % for forested, agricultural, and livestock-dominated watersheds, respectively. Gray relational analysis (GRA) suggested that livestock density was the most important factor for watershed TP load under various hydrologic conditions, while livestock density (LD), soil available phosphorous (SAP), cropland percentage, and mean shape index (SHMN) were notable factors for daily reduction rate (DRR) under high and moist flow conditions. Therefore, to protect the local watershed environments, watershed management approaches that include the regulation of livestock production are recommended as the most effective means of reducing P loads at the watershed scale in subtropical areas of southern China.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

ATPL:

Annual TP load

DD:

Drainage density

DRR:

Daily reduction rate

DTPL:

Daily TP load

GRA:

Gray relational analysis

GRG:

Gray relational grade

LD:

Livestock density

LDC:

Load duration curve

SAP:

Soil available phosphorous

SHMN:

Shape index

TWI:

Topography wetness index

References

  1. Alexander, R. B., Smith, R. A., Schwarz, G. E., Boyer, E. W., Nolan, J. V., & Brakebill, J. W. (2007). Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin. Environmental Science & Technology, 42(3), 822–830.

    Article  Google Scholar 

  2. Baker, A. (2005). Land use and water quality. Encyclopedia of Hydrological Sciences.

  3. Bonta, J. V., & Cleland, B. (2003). Incorporating natural variability, uncertainty, and risk into water quality evaluations using duration curves1. JAWRA Journal of the American Water Resources Association, 39, 1481–1496.

    CAS  Article  Google Scholar 

  4. Braskerud, B. C. (2002). Factors affecting phosphorus retention in small constructed wetlands treating agricultural non-point source pollution. Ecological Engineering, 19(1), 41–61.

    Article  Google Scholar 

  5. Carey, R. O., Migliaccio, K. W., & Brown, M. T. (2011). Nutrient discharges to Biscayne Bay, Florida: trends, loads, and a pollutant index. Science of the Total Environment, 409(3), 530–539.

    CAS  Article  Google Scholar 

  6. Caruso, B. S. (2000). Comparative analysis of New Zealand and US approaches for agricultural nonpoint source pollution management. Environmental Management, 25(1), 9–22.

    Article  Google Scholar 

  7. Chen, H. Y., Teng, Y. G., Wang, J. S., & Song, L. T. (2012). Source apportionment of water pollution in the Jinjiang River (China) using factor analysis with nonnegative constraints and support vector machines. Environmental Forensics, 13(2), 175–184.

    Article  Google Scholar 

  8. Chow, V. T., Maidment, D. R., Mays, L. W. (1988). Applied Hydrology. Tata McGraw-Hill Education. p. 588.

  9. Cleland, B. R. (2002). TMDL development from the “bottom up”—part II: using duration curves to connect the pieces. Proceedings of the Water Environment Federation, 2002(8), 687–697.

    Article  Google Scholar 

  10. Deng, J. L. (1990). A course on grey system theory. Wuhan: Huazhong University of Science and Technology Press.

    Google Scholar 

  11. Forman, R. T. (1995). Land mosaics: the ecology of landscapes and regions. Cambridge University Press.

  12. Fu, C., Zheng, J., Zhao, J., & Xu, W. (2001). Application of grey relational analysis for corrosion failure of oil tubes. Corrosion Science, 43(5), 881–889.

    CAS  Article  Google Scholar 

  13. Gao, Y., Zhu, B., Wang, T., & Wang, Y. (2012). Seasonal change of non-point source pollution-induced bioavailable phosphorus loss: a case study of Southwestern China. Journal of Hydrology, 420, 373–379.

    Article  Google Scholar 

  14. Havens, K. E., & Schelske, C. L. (2001). The importance of considering biological processes when setting total maximum daily loads (TMDL) for phosphorus in shallow lakes and reservoirs. Environmental Pollution, 113(1), 1–9.

    CAS  Article  Google Scholar 

  15. Huang, J., Lin, J., Zhang, Y., Li, Q., & Hong, H. (2013). Analysis of phosphorus concentration in a subtropical river basin in southeast China: implications for management. Ocean and Coastal Management, 81, 29–37.

    Article  Google Scholar 

  16. Huisman, N. L., & Karthikeyan, K. G. (2012). Using radiometric tools to track sediment and phosphorus movement in an agricultural watershed. Journal of Hydrology, 450, 219–229.

    Article  Google Scholar 

  17. Jin, H., Li, Y., Gao, R., Liu, X., & Wu, J. (2012). Distribution of soil nitrogen, phosphorus and its environmental effects in a small subtropical watershed. Journal of Soil and Water Conservation, 26, 123–126.

    Google Scholar 

  18. Jordan, P., Melland, A. R., Mellander, P. E., Shortle, G., & Wall, D. (2012). The seasonality of phosphorus transfers from land to water: implications for trophic impacts and policy evaluation. Science of the Total Environment, 434, 101–109.

    CAS  Article  Google Scholar 

  19. Kang, M. S., Park, S. W., Lee, J. J., & Yoo, K. H. (2006). Applying SWAT for TMDL programs to a small watershed containing rice paddy fields. Agricultural Water Management, 79(1), 72–92.

    Article  Google Scholar 

  20. Kara, E. L., Heimerl, C., Killpack, T., Van de Bogert, M. C., Yoshida, H., & Carpenter, S. R. (2012). Assessing a decade of phosphorus management in the Lake Mendota, Wisconsin watershed and scenarios for enhanced phosphorus management. Aquatic Sciences, 74(2), 241–253.

    CAS  Article  Google Scholar 

  21. Kato, T., Kuroda, H., & Nakasone, H. (2009). Runoff characteristics of nutrients from an agricultural watershed with intensive livestock production. Journal of Hydrology, 368(1), 79–87.

    CAS  Article  Google Scholar 

  22. Kellogg, R. L., Lander, C. H., Moffitt, D. C., & Gollehon, N. (2000). Manure nutrients relative to the capacity of cropland and pastureland to assimilate nutrients: Spatial and temporal trends for the United States. Proceedings of the Water Environment Federation, 2000(16), 18–157.

  23. Kim, J. S., Oh, S. Y., & Oh, K. Y. (2006). Nutrient runoff from a Korean rice paddy watershed during multiple storm events in the growing season. Journal of Hydrology, 327(1), 128–139.

    CAS  Article  Google Scholar 

  24. Krupa, M., Tate, K. W., van Kessel, C., Sarwar, N., & Linquist, B. A. (2011). Water quality in rice-growing watersheds in a Mediterranean climate. Agriculture, Ecosystems & Environment, 144(1), 290–301.

    Article  Google Scholar 

  25. Lam, Q. D., Schmalz, B., & Fohrer, N. (2011). The impact of agricultural best management practices on water quality in a North German lowland catchment. Environmental Monitoring and Assessment, 183(1-4), 351–379.

    CAS  Article  Google Scholar 

  26. Lee, S. W., Hwang, S. J., Lee, S. B., Hwang, H. S., & Sung, H. C. (2009). Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landscape and Urban Planning, 92(2), 80–89.

    Article  Google Scholar 

  27. Li, Y., & Shao, M. A. (2004). Experimental study on soil tillage affecting phosphorus loss from slope land. Chinese Journal of Applied Ecology, 15, 443–448.

    CAS  Google Scholar 

  28. Li, W., & Xu, X. P. (1999). Hydraulics. Wuhan: The Press of Wu Han Hydraulic and Power University.

    Google Scholar 

  29. Li, P., Tan, T. C., & Lee, J. Y. (1997). Grey relational analysis of amine inhibition of mild steel corrosion in acids. Corrosion, 53(3), 186–194.

    CAS  Article  Google Scholar 

  30. Li, Y., Meng, C., Gao, R., Yang, W., Jiao, J. X., Li, Y., Wang, Y., & Wu, J. S. (2014). Study on phosphorus loadings in ten natural and agricultural watersheds in subtropical region of China. Environmental Monitoring and Assessment, 186(5), 2717–2727.

    CAS  Article  Google Scholar 

  31. Makarewicz, J. C., D’Aiuto, P. E., & Bosch, I. (2007). Elevated nutrient levels from agriculturally dominated watersheds stimulate metaphyton growth. Journal of Great Lakes Research, 33(2), 437–448.

    Article  Google Scholar 

  32. McDowell, R. W., Sharpley, A. N., & Folmar, G. (2003). Modification of phosphorus export from an eastern USA catchment by fluvial sediment and phosphorus inputs. Agriculture, Ecosystems & Environment, 99(1), 187–199.

    CAS  Article  Google Scholar 

  33. McGarigal, K., & Marks, B. J. (1995). Spatial pattern analysis program for quantifying landscape structure. Gen. Tech. Rep. PNW-GTR-351. US Department of Agriculture, Forest Service, Pacific Northwest Research Station.

  34. Meng, C., Li, Y. Y., Xu, X. G., Gao, R., Wang, Y., & Zhang, M. Y. (2013). A case study on non-point source pollution and environmental carrying capacity of animal raising production in subtropical watershed. Acta Scientiae Circumstantiae, 33(2), 635–643.

    CAS  Google Scholar 

  35. MEPC (Ministry of Environmental Protection of China). (2002). Water and wastewater monitoring analysis method (4th ed.). Beijing: China Environmental Science Press.

    Google Scholar 

  36. MEPC (Ministry of Environmental Protection of China), National Bureau of Statistics of China, Ministry of Agriculture of China. (2010). First national pollution census bulletin. http://www.gov.cn/jrzg/2010-02/10/content_1532174.htm.

  37. Murphy, J. A. M. E. S., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    CAS  Article  Google Scholar 

  38. Némery, J., Garnier, J., & Morel, C. (2005). Phosphorus budget in the Marne Watershed (France): urban vs. diffuse sources, dissolved vs. particulate forms. Biogeochemistry, 72(1), 35–66.

    Article  Google Scholar 

  39. Ng Kee Kwong, K. F., Bholah, A., Volcy, L., & Pynee, K. (2002). Nitrogen and phosphorus transport by surface runoff from a silty clay loam soil under sugarcane in the humid tropical environment of Mauritius. Agriculture, Ecosystems & Environment, 91(1), 147–157.

    Article  Google Scholar 

  40. Peng, L., & Bai, Y. (2013). Numerical study of regional environmental carrying capacity for livestock and poultry farming based on planting-breeding balance. Journal of Environmental Sciences, 25(9), 1882–1889.

    Article  Google Scholar 

  41. Pionke, H. B., Gburek, W. J., Schnabel, R. R., Sharpley, A. N., & Elwinger, G. F. (1999). Seasonal flow, nutrient concentrations and loading patterns in stream flow draining an agricultural hill-land watershed. Journal of Hydrology, 220(1), 62–73.

    CAS  Article  Google Scholar 

  42. Pote, D. H., Daniel, T. C., Moore, P. A., Nichols, D. J., Sharpley, A. N., & Edwards, D. R. (1996). Relating extractable soil phosphorus to phosphorus losses in runoff. Soil Science Society of America Journal, 60(3), 855–859.

    CAS  Article  Google Scholar 

  43. Qin, H. L., Quan, Z., Liu, X. L., Li, M. D., Zong, Y., Wu, J. S., & Wei, W. X. (2010). Phosphorus status and risk of phosphate leaching loss from vegetable soils of different planting years in suburbs of Changsha, China. Agricultural Sciences in China, 9(11), 1641–1649.

    CAS  Article  Google Scholar 

  44. Rao, N. S., Easton, Z. M., Schneiderman, E. M., Zion, M. S., Lee, D. R., & Steenhuis, T. S. (2009). Modeling watershed-scale effectiveness of agricultural best management practices to reduce phosphorus loading. Journal of Environmental Management, 90(3), 1385–1395.

    Article  Google Scholar 

  45. Ritter, W. F., & Shirmohammadi, A. (Eds.). (2000). Agricultural nonpoint source pollution: watershed management and hydrology. CRC Press.

  46. Sander, T., & Gerke, H. H. (2007). Preferential flow patterns in paddy fields using a dye tracer. Vadose Zone Journal, 6(1), 105–115.

    Article  Google Scholar 

  47. Schindler, D. W. (1977). Evolution of phosphorus limitation in lakes. Science, 195(4275), 260–262.

    CAS  Article  Google Scholar 

  48. Schröder, J. J., Scholefield, D., Cabral, F., & Hofman, G. (2004). The effects of nutrient losses from agriculture on ground and surface water quality: the position of science in developing indicators for regulation. Environmental Science & Policy, 7(1), 15–23.

    Article  Google Scholar 

  49. Sharpley, A. N., Daniel, T. C., & Edwards, D. R. (1993). Phosphorus movement in the landscape. Journal of Production Agriculture, 6(4), 492–500.

    Article  Google Scholar 

  50. Sharpley, A., Kleinman, P., & Weld, J. (2004). Assessment of best management practices to minimise the runoff of manure-borne phosphorus in the United States. New Zealand Journal of Agricultural Research, 47(4), 461–477.

    Article  Google Scholar 

  51. Shigaki, F., Sharpley, A., & Prochnow, L. I. (2006). Source-related transport of phosphorus in surface runoff. Journal of Environmental Quality, 35(6), 2229–2235.

    CAS  Article  Google Scholar 

  52. Sileika, A. S., Gaigalis, K., Kutra, G., & Smitiene, A. (2005). Factors affecting N and P losses from small catchments (Lithuania). Environmental Monitoring and Assessment, 102(1-3), 359–374.

    CAS  Article  Google Scholar 

  53. Sörensen, R., Zinko, U., & Seibert, J. (2006). On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrology and Earth System Sciences Discussions, 10(1), 101–112.

    Article  Google Scholar 

  54. Stein, E. D., & Ackerman, D. (2007). Dry weather water quality loadings in arid, urban watersheds of the Los Angeles Basin, California, USA1. JAWRA Journal of the American Water Resources Association, 43, 398–413.

    CAS  Article  Google Scholar 

  55. Stow, C. A., Borsuk, M. E., & Reckhow, K. H. (2011). Nitrogen TMDL development in the Neuse River Watershed: an imperative for adaptive management. Journal of Contemporary Water Research and Education, 122(1), 4.

    Google Scholar 

  56. Turner, R. E., & Rabalais, N. N. (2004). Suspended sediment, C, N, P, and Si yields from the Mississippi River Basin. Hydrobiologia, 511(1-3), 79–89.

    CAS  Article  Google Scholar 

  57. USEPA (US Environmental Protection Agency). (2007). An approach for using load duration curves in the development of TMDLs. OFfiCE OF WETLANDS, OCEANS AND WATERSHEDS, EPA 841-B-07-006, Washington, DC.

  58. Vogel, R. M., & Fennessey, N. M. (1994). Flow-duration curves. I: new interpretation and confidence intervals. Journal of Water Resources Planning and Management, 120(4), 485–504.

    Article  Google Scholar 

  59. Wang, Y., Li, Y., Liu, X. L., Liu, F., Li, Y. Y., Song, L. F., Li, H., Ma, Q. M., & Wu, J. S. (2014). Relating land use patterns to stream nutrient levels in red soil agricultural catchments in subtropical central China. Environmental Science and Pollution Research, 21(17), 10481–10492.

    CAS  Article  Google Scholar 

  60. Wei, M. J., & Shen, C. (2009). http://www.chinanews.com/cj/cj-hbht/news/2009/11-05/1948982.

  61. Xie, Y. X., Xiong, Z. Q., Xing, G. X., Sun, G. Q., & Zhu, Z. L. (2007). Assessment of nitrogen pollutant sources in surface waters of Taihu Lake region. Pedosphere, 17(2), 200–208.

    CAS  Article  Google Scholar 

  62. Yang, J., & Zhang, G. (2003). Quantitative relationship between land use and phosphorus losses in subtropical hilly regions of China. Pedosphere, 13, 67–74.

    CAS  Google Scholar 

  63. Zhang, F. S., Wang, J. Q., Zhang, W. F., Cui, Z. L., Ma, W. Q., Chen, X. P., & Jiang, R. F. (2008). Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 45(5), 915–924.

    Google Scholar 

  64. Zhao, Y. H., Deng, X. Z., Zhan, J. Y., Xi, B. D., & Lu, Q. (2010). Progress on preventing and controlling strategies of lake eutrophication in China. Huanjing Kexue yu Jishu, 33(3), 92–98.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Science Fund of China (41171396) and the National Science and Technology Pillar Program (2012BAD14B 17, 2014BAD14B02). The authors thank Mr. Weidong Zhang for his kind assistance in field observations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuyuan Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meng, C., Li, Y., Wang, Y. et al. TMDL for phosphorus and contributing factors in subtropical watersheds of southern China. Environ Monit Assess 187, 514 (2015). https://doi.org/10.1007/s10661-015-4737-6

Download citation

Keywords

  • Total maximum daily load
  • Total phosphorus load
  • Load duration curves
  • Gray relational analysis
  • Subtropical watershed
  • Livestock density
  • Land use