Paleolimnological record as an indication of incipient eutrophication in an oligotrophic subtropical coastal lake in Southern Brazil

  • Mariana Coutinho Hennemann
  • José Carlos Simonassi
  • Mauricio Mello Petrucio


Paleolimnology of lake sediments can be a powerful tool to assess various aspects of lake history and catchment change through elemental, isotopic and molecular analysis of the sedimented organic matter (OM). In this sense, the objective of the present study was to investigate the source, depositional history and preservation of OM in the sediments of two different sites in Peri Lake (southern Brazil) to better understand the nature and direction of environmental changes. Therefore, two sediment cores were sampled and analysed for total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) concentrations and elemental ratios, and stable isotope ratios of C and N (δ13C and δ15N). Both cores showed similar general tendencies, with increasing amounts of OM (range 1–35 %), TOC (2.55–258.40 mg g−1), TN (0.30–25.97 mg g−1) and TP (0.03–4.72 mg g−1) from the bottom toward the top more recent layers. TOC:TN ratios (range 8.1–14.7) showed a slight decrease in recent times and indicated a mixture of allochthonous and autochthonous contribution to the OM, with predominance of the last source. TN:TP (range 0.2–51.3) indicated a condition of potential limitation by P in general. Both δ13C (range −25.58 to −20.85) and δ15N (range 2.6 to 7.1) showed a decreasing pattern toward the top of the cores, in opposition to macronutrient concentration. Differences in the depth variation pattern between the two cores were associated to the marginal location of one of the cores. The results suggest that nutrients and primary production are increasing in the lake.


Paleolimnology Santa Catarina Stable isotope ratio Sediment core C:N ratio 



We are thankful to the researchers from the “Laboratório de Biologia e Cultivo de Peixes de Água Doce” for helping in core sampling, and to Giuliane Guadagnin for laboratory assistance. “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES—Brazil) provided financial support to the first author. We also thank the comments of two anonymous reviewers that helped to improve the quality of the manuscript.


  1. Aspila, K. I., Agemian, H., & Chau, A. S. Y. (1976). A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst, 101, 187–197.CrossRefGoogle Scholar
  2. Augustinus, P., Reid, M., Andersson, S., Deng, Y., & Horrocks, M. (2006). Biological and geochemical record of anthropogenic impacts in recent sediments from Lake Pupuke, Auckland City, New Zealand. Journal of Paleolimnology, 35, 789–805.CrossRefGoogle Scholar
  3. Battarbee, R. W. (1999). The importance of palaeolimnology to lake restoration. Hydrobiology, 395/396, 149–159.CrossRefGoogle Scholar
  4. Brenner, M., Whitmore, T. J., Curtis, J. H., Hodell, D. A., & Schelske, C. L. (1999). Stable isotope (d13C and d15N) signatures of sedimented organic matter as indicators of historic lake trophic state. Journal of Paleolimnology, 22, 205–221.CrossRefGoogle Scholar
  5. Carey, C. C., & Rydin, E. (2011). Lake trophic status can be determined by the depth distribution of sediment phosphorus. Limnology and Oceanography, 56(6), 2051–2063.CrossRefGoogle Scholar
  6. Das, S. K., Routh, J., Roychoudhury, N. A., & Klump, J. V. (2008). Elemental (C, N, H and P) and stable isotope (d15N and d13C) signatures in sediments from Zeekoevlei, South Africa: a record of human intervention in the lake. Journal of Paleolimnology, 39, 349–360.CrossRefGoogle Scholar
  7. Eilers, J. M., Kann, J., Cornett, J., Moser, K., & St. Amand, A. (2004). Paleolimnological evidence of change in a shallow, hypereutrophic lake: Upper Klamath Lake, Oregon, USA. Hydrobiology, 520, 7–18.CrossRefGoogle Scholar
  8. Elser, J. J., Andersen, T., Baron, J. S., Bergström, A. K., Jansson, M., Kyle, M., Nydick, K. R., Steger, L., & Hessen, D. O. (2009). Shifts in Lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science, 326, 835–837.CrossRefGoogle Scholar
  9. Engstrom, D. R., Schottler, S. P., Leavitt, P. R., & Havens, K. E. (2006). A reevaluation of the cultural eutrophication of Lake Okeechobee using multiproxy sediment records. Ecological Applications, 16, 1194–1206.CrossRefGoogle Scholar
  10. Engstrom, D. R., Almendinger, J. E., & Wolin, J. A. (2009). Historical changes in sediment and phosphorus loading to the upper Mississippi River: mass-balance reconstructions from the sediments of Lake Pepin. Journal of Paleolimnology, 41, 563–588.CrossRefGoogle Scholar
  11. Fogel, M. L., & Cifuentes, L. A. (1993). Isotope fractionation during primary production. In M. H. Engel, & S. A. Macko (Eds.), Organic geochemistry (pp. 73–98). NY: Plenum Press.CrossRefGoogle Scholar
  12. Fontes, M. L., Tonetta, D., Dalpaz, L., Antônio, R. V., & Petrucio, M. M. (2013). Dynamics of planktonic prokaryotes and dissolved carbon in a subtropical coastal lake. Frontiers in Microbiology, 4, 71.CrossRefGoogle Scholar
  13. Gu, B. (2009). Variations and controls of nitrogen stable isotopes in particulate organic matter of lakes. Oecologia, 160, 421–431.CrossRefGoogle Scholar
  14. Gu, B., Schelske, C. L., & Hodell, D. A. (2004). Extreme 13C enrichments in a shallow hypereutrophic lake: implications for carbon cycling. Limnology and Oceanography, 49, 1152–1159.CrossRefGoogle Scholar
  15. Gu, B., Chapman, A. D., & Schelske, C. L. (2006). Factors controlling seasonal variations in stable isotope composition of particulate matter in a soft water eutrophic lake. Limnology and Oceanography, 51, 2837–2848.CrossRefGoogle Scholar
  16. Hennemann, M. C., & Petrucio, M. M. (2010). Seasonal phytoplankton response to increased temperature and phosphorus inputs in a freshwater coastal lagoon, southern Brazil: a microcosm bioassay. Acta Limnologica Brasiliensia, 22(3), 295–305.CrossRefGoogle Scholar
  17. Hennemann, M. C., & Petrucio, M. M. (2011). Spatial and temporal dynamic of trophic relevant parameters in a subtropical coastal lagoon in Brazil. Environmental Monitoring and Assessment, 181, 347–361.CrossRefGoogle Scholar
  18. Istvánovics, V., Shafik, H. M., Presing, M., & Juhos, S. (2000). Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures. Freshwater Biology, 43, 257–275.CrossRefGoogle Scholar
  19. Janbu, A. D., Paasche, Ø., & Talbot, M. R. (2011). Paleoclimate changes inferred from stable isotopes and magnetic properties of organic-rich lake sediments in Arctic Norway. Journal of Paleolimnology, 46, 29–44.CrossRefGoogle Scholar
  20. Jensen, P., Jeppesen, E., Olrik, K., & Kristensen, P. (1994). Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Canadian Journal of Fisheries and Aquatic Sciences, 51, 1692–1699.CrossRefGoogle Scholar
  21. Komárková, J., Laudares-Silva, R., & Senna, P. A. C. (1999). Extreme morphology of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) in the Lagoa do Peri, a freshwater coastal lagoon, Santa Catarina, Brazil. Algological Studies, 94, 207–222.Google Scholar
  22. Koroleff, F. (1976). Determination of nutrients. In K. Grasshoff (Ed.), Methods of sea water analysis. Chemie: Verlag.Google Scholar
  23. Lehmann, M. F., Bernasconi, S. M., Mckenzie, J. A., Barbieri, A., Simona, M., & Veronesi, M. (2004). Seasonal variation of the d13C and d15N of particulate and dissolved carbon and nitrogen in Lake Lugano: constraints on biogeochemical cycling in a eutrophic lake. Limnology and Oceanography, 49, 415–429.CrossRefGoogle Scholar
  24. Meyers, P. A. (1994). Preservation of source identification of sedimentary organic matter during and after deposition. Chemical Geology, 144, 289–302.CrossRefGoogle Scholar
  25. Meyers, P. A. (1997). Organic geochemical proxies of paleoceanographic, paleolimnologic and palaeoclimatic processes. Organic Geochemistry, 27, 213–250.CrossRefGoogle Scholar
  26. Meyers, P. A. (2003). Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian great lakes. Organic Geochemistry, 34, 261–289.CrossRefGoogle Scholar
  27. Meyers, P. A., & Eadie, B. (1993). Sources, degradation and recycling of organic matter associated with sinking particles in Lake Michigan. Organic Geochemistry, 20, 47–56.CrossRefGoogle Scholar
  28. Padisák, J. (1997). Cylindrospermopsis raciborskii (Woloszyska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie, Supplement, 107, 563–593.Google Scholar
  29. Pulatsu, S., Kırkagaç, A. T. M., & Köksal, G. (2008). Sediment phosphorus characteristics in the clearwater state of Lake Mogan, Turkey. Lakes & Reservoirs: Research and Management, 13, 197–205.CrossRefGoogle Scholar
  30. Terranes, J. L., & Bernasconi, S. M. (2000). The record of nitrate utilization and productivity limitation provided by d15N values in lake organic matter—a study of sediment trap and core sediments from Baldeggersee, Switzerland. Limnology and Oceanography, 45, 801–813.CrossRefGoogle Scholar
  31. Terranes, J. L., & Bernasconi, S. M. (2005). Factors controlling d13C values of sedimentary carbon in hypertrophic Baldeggersee, Switzerland, and implications for interpreting isotope excursion in lake sedimentary records. Limnology and Oceanography, 50, 914–922.CrossRefGoogle Scholar
  32. Tonetta, D., Petrucio, M. M., & Laudares-Silva, R. (2013). Temporal variation in phytoplankton community in a freshwater coastal lake of southern Brazil. Acta Limnologica Brasiliensia, 25, 99–110.CrossRefGoogle Scholar
  33. Torres, I. C., Inglett, P. W., Brenner, M., Kenney, W. F., & Reddy, R. (2012). Stable isotope (d13C and d15N) values of sediment organic matter in subtropical lakes of different trophic status. Journal of Paleolimnology, 47, 693–706.CrossRefGoogle Scholar
  34. Trolle, D., Hamilton, D. P., & Pilditch, C. A. (2010). Evaluating the influence of lake morphology, trophic status and diagenesis on geochemical profiles in lake sediments. Applied Geochemistry, 25, 621–632.CrossRefGoogle Scholar
  35. Vreca, P., & Muri, G. (2006). Changes in accumulation of organic matter and stable carbon and nitrogen isotopes in sediments of two Slovenian mountain lakes (Lake Ledvica and Lake Planina), induced by eutrophication changes. Limnology and Oceanography, 51(1), 781–790.CrossRefGoogle Scholar
  36. Wolin, J. A., & Stoermer, E. F. (2005). Response of a Lake Michigan coastal lake to anthropogenic catchment disturbance. Journal of Paleolimnology, 33, 73–94.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mariana Coutinho Hennemann
    • 1
  • José Carlos Simonassi
    • 2
  • Mauricio Mello Petrucio
    • 1
  1. 1.Laboratory of Freshwater Ecology, Postgraduate Programme in Ecology, Biological Sciences CentreFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Sea Studies Centre, Biological Sciences CentreFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations