Urban change analysis and future growth of Istanbul

Abstract

This study is aimed at analyzing urban change within Istanbul and assessing the city’s future growth potential using appropriate approach modeling for the year 2040. Urban growth is a major driving force of land-use change, and spatial and temporal components of urbanization can be identified through accurate spatial modeling. In this context, widely used urban modeling approaches, such as the Markov chain and logistic regression based on cellular automata (CA), were used to simulate urban growth within Istanbul. The distance from each pixel to the urban and road classes, elevation, and slope, together with municipality and land use maps (as an excluded layer), were identified as factors. Calibration data were obtained from remotely sensed data recorded in 1972, 1986, and 2013. Validation was performed by overlaying the simulated and actual 2013 urban maps, and a kappa index of agreement was derived. The results indicate that urban expansion will influence mainly forest areas during the time period of 2013–2040. The urban expansion was predicted as 429 and 327 km2 with the Markov chain and logistic regression models, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Akın, A., Clarke, K. C., & Berberoğlu, S. (2014a). The impact of historical exclusion on the calibration of the SLEUTH urban growth model. International Journal of Applied Earth Observation and Geoinformation, 27, 156–168.

    Article  Google Scholar 

  2. Akın, A., Aliffi, S., Sunar, F. (2014b). Spatio-temporal urban change analysis and the ecological threats concerning the third bridge in Istanbul City. ISPRS Technical Commission VII Symposium.

  3. Almeida, C. M., Batty, M., Monteiro, A. M. V., Camara, G., Soares-Filho, B. S., Cerqueirac, G. C., & Pennachin, C. L. (2003). Stochastic cellular automata modeling of urban land use dynamics: empirical development and estimation. Computers, Environment and Urban Systems, 27, 481–509.

    Article  Google Scholar 

  4. Arsanjani, J. J., Helbich, M., & Mousivand, A. J. (2014). A morphological approach to predicting urban expansion. Transactions in GIS, 18(2), 219–233. doi: 10.1111/tgis.12031

    Article  Google Scholar 

  5. Bagan, H., & Yamagata, Y. (2012). Landsat analysis of urban growth: how Tokyo became the world’s largest megacity during the last 40 years. Remote Sensing of Environment, 127, 210–222.

    Article  Google Scholar 

  6. Batty, M. (1981). Urban models. In N. Wrigley & R. J. Bennett (Eds.), Quantitative geography: a British view (pp. 181–191). London: Routledge and Kegan Paul.

    Google Scholar 

  7. Batty, M., & Xie, Y. (1994). From cells to cities. Environment and Planning B: Planning and Design, 21, 531–548.

    Article  Google Scholar 

  8. Bhatta, B., Saraswati, S., & Bandyopadhyay, D. (2010). Urban sprawl measurement from remote sensing data. Applied Geography, 30(4), 731–740.

    Article  Google Scholar 

  9. Bradley, A. P. (1997). The use of area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30, 1145–1159.

    Article  Google Scholar 

  10. Clarke, K. C. (2008). Mapping and modeling land use change: an application of the SLEUTH model. In C. Pettit, W. Cartwright, I. Bishop, K. Lowell, D. Pullar, & D. Duncan (Eds.), Landscape analysis and visualization: spatial models for natural resource management and planning (pp. 353–366). Berlin: Springer.

    Chapter  Google Scholar 

  11. Clarke, K. C., & Gaydos, L. J. (1998). Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 12, 699–714.

    CAS  Article  Google Scholar 

  12. Clarke, K. C., Hoppen, S., & Gaydos, L. (1997). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environmental and Planning B, 24, 247–261.

    Article  Google Scholar 

  13. Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing Environment, 37, 35–46.

    Article  Google Scholar 

  14. Dinamica Project, (2013). http://www.csr.ufmg.br/dinamica/

  15. Erdoğan, N., Nurlu, E., Erdem., Ü. (2011). Modelling land use changes in Karaburun by using CLUE-s. ITU, A|Z, 8, 91-102.

  16. Estoque, R. C., & Murayama, Y. (2012). Examining the potential impact of land use/cover changes on the ecosystem services of Baguio city, the Philippines: a scenario-based analysis. Applied Geography, 35, 316–326.

    Article  Google Scholar 

  17. Eyoh, A., Olayinka, D. N., Nwilo, P., Okwuashi, O., Song, M., & Udoudo, D. (2012). Modelling and predicting future urban expansion of Lagos, Nigeria from remote sensing data using logistic regression and GIS. International Journal of Applied Science and Technology, 2, 116–124.

    Google Scholar 

  18. Foody, G. M. (2001). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80, 185–201.

    Article  Google Scholar 

  19. Greenel, R., Devillers, R., Luther, J. E., & Brian, G. E. (2011). GIS-based multiple-criteria decision analysis. Geography Compass, 5(6), 412–432. doi:10.1111/j.1749-8198.2011.00431.

    Article  Google Scholar 

  20. He, J., Liu, Y., Yu, Y., Tang, W., Xiang, W., & Liu, D. (2013). A counterfactual scenario simulation approach for assessing the impact of farmland preservation policies on urban sprawl and food security in a major grain-producing area of China. Applied Geography, 37, 127–138.

    Article  Google Scholar 

  21. Hu, Z., & Lo, C. (2007). Modeling urban growth in Atlanta using logistic regression. Computers, Environment and Urban Systems, 31(6), 667–688.

    Article  Google Scholar 

  22. Janssen, L. L. F., & Vanderwel, J. M. (1994). Accuracy assessment of satellite derived land-cover data: a review. Photogrammetric Engineering & Remote Sensing, 60, 419–426.

    Google Scholar 

  23. Kalkhan, M. A., Reıch, R. M., & Czaplewskı, R. L. (1997). Variogram estimates and confidence intervals for the Kappa measure of classification accuracy. Canadian Journal of Remote Sensing, 23, 210–216.

    Article  Google Scholar 

  24. Koomen, E., Stillwell, J., Bakema, A., & Scholten, H. J. (2007). Modelling land-use change; progress and applications. Geojournal library, volume 90. Dordrecht: Springer.

    Book  Google Scholar 

  25. Koukoulas, S., & Blackburn, G. A. (2001). Introducing new indices for accuracy evaluation of classified images representing semi-natural woodland environments. Photogrammetric Engineering & Remote Sensing, 67, 499–510.

    Google Scholar 

  26. Lai, E., Lundie, S., & Ashbolt, N. J. (2008). Review of multi-criteria decision aid for integrated sustainability assessment of urban water systems. Urban Water Journal, 5(4), 315–327.

    Article  Google Scholar 

  27. Landis, J., & Zhang, M. (1998). The second generation of the California urban futures model. Part 1: model logic and theory. Environment and Planning B: Planning and Design, 30, 657–666.

    Article  Google Scholar 

  28. Li, X., & Liu, X. (2006). An extended cellular automaton using case-based reasoning for simulating urban development in a large complex region. International Journal of Geographical Information Science, 20, 1109–1136.

    Article  Google Scholar 

  29. Lillesand, T. M., & Kiefer, R. W. (1994). Remote sensing and photo interpretation (3rd ed.). Wiley: New York. 750 p.

    Google Scholar 

  30. Mahiny, A. S., & Clarke, K. C. (2012). Guiding SLEUTH land-use/land-cover change modeling using multicriteria evaluation: towards dynamic sustainable land-use planning. Environment and Planning B: Planning and Design, 2012(39), 925–944.

    Article  Google Scholar 

  31. Mas, J. F., Soares Filho, B., Pontius, R. G., Jr., Farfán Gutiérrez, M., & Rodrigues, H. (2013). A suite of tools for ROC analysis of spatial models. ISPRS International Journal Geo-Informatiobn, 2(3), 869–887.

    Article  Google Scholar 

  32. Mousivand, A.J., Alimohammadi Sarab, A., Shayan, S., (2007). A new approach of predicting land use and land cover changes by satellite imagery and Markov chain model (case study: Tehran). MSc Thesis. Tarbiat Modares University, Tehran, Iran.

  33. Muller, M. R., & Middleton, J. (1994). A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landscape Ecology, 9(2), 151–157.

    Google Scholar 

  34. Patino, J. E., & Duque, J. C. (2013). A review of regional science applications of satellite remote sensing in urban settings. Computers, Environment and Urban Systems, 37, 1e17.

    Article  Google Scholar 

  35. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagation errors. Nature, 323, 533–536.

    Article  Google Scholar 

  36. Schneider, A., & Woodcock, C. (2008). Compact, dispersed, fragmented, extensive? A comparison of urban expansion in twenty-five global cities using remotely sensed, data pattern metrics and census information. Urban Study, 45, 659–92.

    Article  Google Scholar 

  37. Silva, E. A., & Clarke, C. K. (2005). Complexity, emergence and cellular urban models: lessons learned from appling SLEUTH to two Portuguese cities. European Planning Studies, 13, 93–115.

    Article  Google Scholar 

  38. Swain, P. H., & Davis, S. M. (1978). Remote sensing: the quantitative approach. New York: McGraw-Hill.

    Google Scholar 

  39. Swets, J. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293.

    CAS  Article  Google Scholar 

  40. TUİK, (2013). Turkish Statistical Institute, http://www.turkstat.gov.tr/

  41. Veldkamp, A., & Lambin, E. F. (2001). Predicting land-use change. Agriculture, Ecosystems and Environment, 85, 1–6.

    Article  Google Scholar 

  42. Verburg, P. H., & Veldkamp, A. (2004). Projecting land use transitions at forest fringes in the Philippines at two spatial scales. Landscape Ecology, 19(2004), 77–98.

    Article  Google Scholar 

  43. Verburg, P. H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., & Mastura, S. S. A. (2002). Modeling the spatial dynamics of regional land use: the clue-s model. Environmental Management, 30(3), 391–405.

    Article  Google Scholar 

  44. Waddell, P. (2010). Modelling residential location in UrbanSim, 165-180, Residential location choice: models and applications, Pagliara, F., Preston, J. and Simmonds, D. (Eds.), ISBN: 978-3-642-12787-8, Springer, Advances in Spatial Science Series, 250 p.

  45. Weng, Q. (2001). A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. International Journal of Remote Sensing, 22, 1999–2014.

    Google Scholar 

  46. Xie, C., Huang, B., Claramunt, C., Chandramouli, C. (2005). Spatial logistic regression and GIS to model rural-urban land conversion. In: Proceedings of PROCESSUS Second International Colloquium on the Behavioural Foundations of Integrated Land-use and Transportation Models: frameworks, models and applications, June 12–15, 2005, University of Toronto, Canada.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anıl Akın.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akın, A., Sunar, F. & Berberoğlu, S. Urban change analysis and future growth of Istanbul. Environ Monit Assess 187, 506 (2015). https://doi.org/10.1007/s10661-015-4721-1

Download citation

Keywords

  • Istanbul
  • Urban growth
  • Markov chain
  • Logistic regression