Skip to main content

Advertisement

Log in

Fractionation and risk assessment of Fe and Mn in surface sediments from coastal sites of Sonora, Mexico (Gulf of California)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate Fe and Mn distribution in geochemical fractions of the surface sediment of four oyster culture sites in the Sonora coast, Mexico. A selective fractionation scheme to obtain five fractions was adapted for the microwave system. Surface sediments were analyzed for carbonates, organic matter contents, and Fe and Mn in geochemical fractions. The bulk concentrations of Fe ranged from 10,506 to 21,918 mg/kg (dry weight, dry wt), and the bulk concentrations of Mn ranged from 185.1 to 315.9 mg/kg (dry wt) in sediments, which was low and considered as non-polluted in all of the sites. The fractionation study indicated that the major geochemical phases for the metals were the residual, as well as the Fe and Mn oxide fractions. The concentrations of metals in the geochemical fractions had the following order: residual >> Fe and Mn oxides > organic matter > carbonates > interchangeable. Most of the Fe and Mn were linked to the residual fraction. Among non-residual fractions, high percentages of Fe and Mn were linked to Fe and Mn oxides. The enrichment factors (EFs) for the two metals were similar in the four studied coasts, and the levels of Fe and Mn are interpreted as non-enrichment (EF < 1) because the metals concentrations were within the baseline concentrations. According to the environmental risk assessment codes, Fe and Mn posed no risk and low risk, respectively. Although the concentrations of Fe and Mn were linked to the residual fraction, the levels in non-residual fractions may significantly result in the transference of other metals, depending on several physico-chemical and biological factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achterberg, E. P., Herzl, V. M. C., Braungardt, C. B., & Millward, G. E. (2003). Metal behavior in an estuary polluted by acid mine drainage: the role of particulate matter. Environmental Pollution, 121, 283–292.

    Article  CAS  Google Scholar 

  • AOAC (1999). Official methods of analysis of the association of official analytical chemists international, Vol. 1. Methods 955.01. Published by AOAC International, USA.

  • Bibi, M. H., Faruque, A., & Hiroaki, I. (2007). Assessment of metal concentrations in lake sediments of southwest Japan based on sediment quality guidelines. Environmental Geology, 52, 1–15.

    Article  Google Scholar 

  • Birth, G. (2003). A scheme for assessing human impacts on coastal aquatic environments using sediments. In C. D. Woodcoffe & R. A. Furness (Eds.), Coastal GIS. Australia: Wollongong University Papers in Center for Maritime Policy.

    Google Scholar 

  • Buat-Menard, P., & Chesselet, R. (1979). Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42, 399–411.

    Article  CAS  Google Scholar 

  • Buchman, M. F. (1999). NOAA screening quick references tables. NOAA HAZMAT report 99-1 (p. 12). Seattle: Coastal Protection and Restoration Division.

    Google Scholar 

  • Covelli, S., & Fontolan, G. (1997). Application of a normalization procedure in determining regional geochemical baseline. Environmental Geology, 30, 34–35.

    Article  CAS  Google Scholar 

  • Dang, Z., Liu, C., & Haigh, M. (2002). Mobility of heavy metals associated with the natural weathering of coal mine spoils. Environmental Pollution, 118, 419–426.

    Article  CAS  Google Scholar 

  • Dhanakumar, S., Murthy, K. R., Solaraj, G., & Mohanraj, R. (2013). Heavy-metal fractionation in surface sediments of the Cauvery River Estuarine Region, Southeastern Coast of India. Archives of Environmental Contamination and Toxicology, 65, 14–23.

    Article  CAS  Google Scholar 

  • Fan, W., Wang, W., Chen, J., Li, X., & Yen, Y. F. (2002). Cu, Ni and Pb speciation surface sediments from a contaminated bay of northern China. Marine Pollution Bulletin, 44, 816–832.

    Article  Google Scholar 

  • Förstner, U. (1989). Contaminated sediments. In S. Bhattacharji, G. M. Friedman, H. J. Neugebauer, & A. Seilacher (Eds.), Lectures notes in earth sciences (pp. 1–157). Berlin: Springer-Verlag.

    Google Scholar 

  • García-Meza, J. V., Carrillo-Chávez, A., & Morton-Bermea, O. (2006). Sequential extraction on mine tailings samples after and before bioassays: implications on the speciation of metals during microbial re-colonization. Environmental Geology, 49, 437–448.

    Article  Google Scholar 

  • García-Rico, L., Soto-Cruz, M. S., Jara-Marini, M. E., & Gómez-Alvarez, A. (2004). Fracciones gequímicas de Cd, Cu y Pb en sedimentos costeros superficiales de zonas ostrícolas del Estado de Sonora, México. Revista Internacional de Contaminación Ambiental, 20, 159–167.

    Google Scholar 

  • García-Rico, L., Tejeda-Valenzuela, L., Jara-Marini, M. E., & Gómez-Álvarez, A. (2011). Dissolved and particulate metals in water from Sonora Coast: a pristine zone of Gulf of California. Environmental Monitoring and Assessment, 176, 109–123.

    Article  Google Scholar 

  • Gaudette, H. E., Flight, W. R., Toner, L., & Folger, D. W. (1974). An inexpensive titration method for determination of organic carbon in recent sediments. Journal of Sediment and Petrology, 44, 207–218.

    Google Scholar 

  • Ghrefat, H. A., Yusuf, N., Jamarh, A., & Nazzal, J. (2012). Fractionation and risk assessment of heavy metals in soil samples collected along Zerqa River, Jordan. Environmental Earth and Science, 66, 199–208.

    Article  CAS  Google Scholar 

  • Glantz, S. A. (2002). Alternatives to analysis of variance and the t-test based in ranks. In S. Reinhardt (Ed.), Primer of biostatistics (pp. 351–385). USA: McGraw-Hill.

    Google Scholar 

  • Holmström, H., Ljungberg, J., & Öhlander, B. (1999). Role of carbonates in mitigation of metal release from mining waste. evidence from humidity cells tests. Environmental Geology, 37, 267–280.

    Article  Google Scholar 

  • Huerta-Diaz, M. A. (2006). Influence of light on the adsorption of copper from seawater onto goethite and birnessite. Bulletin of Environmental Contamination and Toxicology, 77, 60–66.

    Article  CAS  Google Scholar 

  • Huerta-Diaz, M. A., & Morse, J. W. (1992). Pyritization of trace metals in anoxic marine sediments. Geochimica et Cosmochimica Acta, 56, 2681–2702.

    Article  CAS  Google Scholar 

  • Huerta-Diaz, M. A., de León-Chavira, F., Lares, M. L., Chee-Barragán, A., & Siqueiros-Valencia, A. (2007). Iron, manganese and trace metal concentrations in seaweeds from the central west coast of the Gulf of California. Applied Geochemistry, 22, 1380–1392.

    Article  CAS  Google Scholar 

  • Jain, C. K., Gupta, H., & Chakrapani, G. J. (2008). Enrichment and fractionation of heavy metals in bed sediments of River Narmada, India. Environmental Monitoring and Assessment, 141, 35–47.

    Article  CAS  Google Scholar 

  • Joksimovic, D., Tomic, I., Stankovic, A. R., Jovic, M., & Stankovic, S. (2011). Trace metal concentrations in Mediterranean blue mussel and surface sediments and evaluation of the mussels quality and possible risks of high human consumption. Food Chemistry, 127, 632–637.

    Article  CAS  Google Scholar 

  • Li, Z. J., Yue, Q. Y., Ni, H., & Gao, B. Y. (2011). Fractionation and potential risk of heavy metals in surface sediment of Nansi Lake, China. Desalination and Water Treatment, 32, 10–18.

    Article  Google Scholar 

  • Long, E. R., & Morgan, L. G. (1990). The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. Seattle: NOAA Tech. Memo. NOS OMA 52. US National Oceanic and Atmospheric Administration. 175 pp.

    Google Scholar 

  • López-Julián, P. L., & Mandado-Collado, J. M. (2002). Extracciones químicas secuenciales de metales pesados. aplicación en ciencias geológicas. Estudios Geológicos, 58, 133–144.

    Article  Google Scholar 

  • Lu, L., Wang, R., Chen, F., Xue, J., Zhang, P., & Lu, J. (2005). Element mobility during pyrite weathering: implications for acid and heavy metal pollution at mining-impacted sites. Environmental Geology, 49, 82–89.

    Article  CAS  Google Scholar 

  • Luoma, S. N. (1989). Can we determine the biological availability of sediment-bound trace elements? Hydrobiologia, 176(177), 379–396.

    Article  Google Scholar 

  • Mahan, K. I., Foderaro, T. A., Garza, T. L., Martínez, R. M., Maroney, G. A., Trivissonno, M. R., & Willging, E. M. (1987). Microwave digestion techniques in the sequential extraction of calcium, iron, chromium, manganese lead, and zinc in sediments. Analytical Chemistry, 59, 938–945.

    Article  CAS  Google Scholar 

  • Muñoz-Barbosa, A., & Huerta-Diaz, M. A. (2013). Trace metal enrichments in nearshore sediments and accumulation in mussels (Modiolus capax) along the eastern coast of Baja California, Mexico: environmental status in 1995. Marine Pollution Bulletin, 77, 71–81.

    Article  Google Scholar 

  • Muñoz-Barbosa, A., Gutiérrez-Galindo, E. A., Daesslé, L. W., Orozco-Borbón, M. V., & Segovia-Zavala, J. A. (2012). Relationship between metal enrichments and a biological adverse effects index in sediments from Todos Santos Bay, northwest coast of Baja California. México Marine Pollution Bulletin, 64, 405–409.

    Article  Google Scholar 

  • Ochoa-Valenzuela, L. E., Gómez-Álvarez, A., García-Rico, L., & Villalba-Atondo, A. I. (2009). Distribution of heavy metals in surface sediments of the Bacochibampo Bay, Sonora, Mexico. Chemical Speciation Bioavailability, 2, 211–218.

    Article  Google Scholar 

  • Ouddane, B., Skiker, M., Fischer, J. C., & Wartel, M. (1999). Distribution of iron and manganese in the Seine river estuary: approach with experimental laboratory mixing. Journal of Environmental Monitoring, 1, 489–496.

    Article  CAS  Google Scholar 

  • Pagnanelli, F., Moscardini, E., Giuliano, V., & Toro, L. (2004). Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area: poluution of an abandoned pyrite series. Environmental Pollution, 132, 189–201.

    Article  CAS  Google Scholar 

  • Perin, G., Craboledda, L., Lucchese, M., Cirillo, R., Dotta, L., Zanette, M. L., & Orio, A. A. (1985). Heavy metal speciation in the sediments of Northern Adriatic sea—a new approach for environmental toxicity determination. In T. D. Lekkas (Ed.), Heavy metal in the environ-ment (Vol. 2, pp. 454–456). Scotland: CEP ConsultantsEdinburg.

    Google Scholar 

  • Persaud, D., Jaagumagi, R., & Hayton, A. (1992). Guidelines for the protection and management of aquatic sediment quality in Ontario. ISBN 0-7729-9248-7. Toronto: Ontario Ministry of the Environment. 23 pp.

    Google Scholar 

  • Ramos-Gómez, M., Avelar, J., Medel-Reyes, A., Yamamoto, L., Godinez, L., Ramírez, M., Guerra, R., & Rodríguez, F. (2012). Movilidad de metales en jales procedentes del Distrito Minero de Guanajuato, México. Revista Internacional de Contaminación Ambiental, 28, 49–52.

    Google Scholar 

  • Rendina, A., De Cabo, L., Arreghini, B. M., & De Iorio, F. A. (2001). Geochemical distribution and mobility factors of Zn and Cu in sediments of the Reconquista River, Argentina. Revista Internacional de Contaminación Ambiental, 17, 187–192.

    CAS  Google Scholar 

  • Ruiz-Fernández, A. C., Hillaire-Marcel, C., Páez-Osuna, F., Ghaleb, B., & Soto-Jiménez, M. (2003). Historical trends of metal pollution recorded in the sediments of the Culiacan River Estuary, Northwestern Mexico. Applied Geochemistry, 18, 577–588.

    Article  Google Scholar 

  • Ruiz-Fernández, A. C., Frignani, M., Hillaire-Marcel, C., Ghaleb, B., Arvizu, M. D., Raygoza-Viera, J. R., & Páez-Osuna, F. (2009). Trace metals (Cd, Cu, Hg, and Pb) accumulation recorded in the intertidal mudflat sediments of three coastal lagoons in the Gulf of California, Mexico. Estuarine and Coasts, 32, 551–564.

    Article  Google Scholar 

  • Shumilin, E., Gordeev, V., Rodríguez, G., Demina, L., & Choumiline, K. (2011). Assessment of geochemical mobility of metals in surface sediments of the Santa Rosalia Mining Region, Western Gulf of California. Archives of Environmental Contamination and Toxicology, 60, 8–25.

    Article  CAS  Google Scholar 

  • Sparks, D. L. (2003). Environmental chemistry (2nd ed., p. 352). New York: Academic.

    Google Scholar 

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28, 1273–1285.

    Article  CAS  Google Scholar 

  • Taylor, M. P., & Kesterton, R. G. H. (2002). Heavy metal contamination of an arid river environment: Gruben River, Namibia. Geomorphology, 42, 311–327.

    Article  Google Scholar 

  • Tessier, A., & Campbell, P. G. C. (1987). Partitionning of trace metals in sediments: relationships with bioavailability. ecology effects of in situ sediment contaminants. Hidrobiology, 149, 43–52.

    Article  CAS  Google Scholar 

  • Tessier, A., Rapin, F., & Carignan, R. (1985). Trace metals in oxic lake sediments: possible adsorption onto iron oxyhydroxides. Geochchimica et Cosmochimica Acta, 49, 183–194.

    Article  CAS  Google Scholar 

  • Xiangdong, I., Zhenguo, S., Ony, W. H. W., & Yok-Sheung, L. (2001). Chemical forms of Pb, Zn and Cu in the sediments profiles of the Pearl River Estuary. Marine Pollution Bulletin, 42, 215–223.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funds provided by Consejo Nacional de Ciencia y Tecnología (CONACyT) grant 063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia García-Rico.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jara-Marini, M.E., García-Camarena, R., Gómez-Álvarez, A. et al. Fractionation and risk assessment of Fe and Mn in surface sediments from coastal sites of Sonora, Mexico (Gulf of California). Environ Monit Assess 187, 468 (2015). https://doi.org/10.1007/s10661-015-4683-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4683-3

Keywords