Skip to main content
Log in

Chlorophyll content retrieval from hyperspectral remote sensing imagery

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Chlorophyll content is the essential parameter in the photosynthetic process determining leaf spectral variation in visible bands. Therefore, the accurate estimation of the forest canopy chlorophyll content is a significant foundation in assessing forest growth and stress affected by diseases. Hyperspectral remote sensing with high spatial resolution can be used for estimating chlorophyll content. In this study, the chlorophyll content was retrieved step by step using Hyperion imagery. Firstly, the spectral curve of the leaf was analyzed, 25 spectral characteristic parameters were identified through the correlation coefficient matrix, and a leaf chlorophyll content inversion model was established using a stepwise regression method. Secondly, the pixel reflectance was converted into leaf reflectance by a geometrical-optical model (4-scale). The three most important parameters of reflectance conversion, including the multiple scattering factor (M 0 ), and the probability of viewing the sunlit tree crown (P T ) and the background (P G ), were estimated by leaf area index (LAI), respectively. The results indicated that M 0 , P T , and P G could be described as a logarithmic function of LAI, with all R 2 values above 0.9. Finally, leaf chlorophyll content was retrieved with RMSE = 7.3574 μg/cm2, and canopy chlorophyll content per unit ground surface area was estimated based on leaf chlorophyll content and LAI. Chlorophyll content mapping can be useful for the assessment of forest growth stage and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baret, F., Vanderbilt, V. C., Steven, M. D., & Jacquemoud, S. (1994). Use of spectral analogy to evaluate canopy reflectance sensitivity to leaf optical properties. Remote Sensing of Environment, 48, 253–260.

    Article  Google Scholar 

  • Beck, R. (2003). EO-1 user guide v. 2.3. Department of Geography University of Cincinnati.

  • Blackburn, G. A. (1998a). Quantifying chlorophylls and caroteniods at leaf and canopy scales: an evaluation of some hyperspectral approaches. Remote Sensing of Environment, 66, 273–285.

    Article  Google Scholar 

  • Blackburn, G. A. (1998b). Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. International Journal of Remote Sensing, 19, 657–675.

    Article  Google Scholar 

  • Blackburn, G. A. (1999). Relationships between spectral reflectance and pigment concentrations in stacks of deciduous broadleaves. Remote Sensing of Environment, 70, 224–237.

    Article  Google Scholar 

  • Canisius, F., & Chen, J. M. (2007). Retrieving forest background reflectance in a boreal region from multi-angle imaging SpectroRadiometer (MISR) data. Remote Sensing of Environment, 107, 312–321.

    Article  Google Scholar 

  • Carter, G. A., Rebbeck, J., & Percy, K. E. (1995). Leaf optical properties in Liriodendron tulipifera and Pinus strobus as influenced by increased atmospheric ozone and carbon dioxide. Canadian Journal of Forest Research, 25, 407–412.

    Article  CAS  Google Scholar 

  • Chappelle, E. W., Kim, M. S., & McMurtrey, J. E., III. (1992). Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sensing of Environment, 39, 239–247.

    Article  Google Scholar 

  • Chen, J. M., & Black, T. (1992). Defining leaf area index for non-flat leaves. Plant, Cell & Environment, 15, 421–429.

    Article  Google Scholar 

  • Chen, J. M., & Cihlar, J. (1996). Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sensing of Environment, 55, 153–162.

    Article  Google Scholar 

  • Chen, J. M., & Leblanc, S. G. (1997). A four-scale bidirectional reflectance model based on canopy architecture. IEEE Transactions on Geoscience and Remote Sensing, 35, 1316–1337.

    Article  Google Scholar 

  • Chen, J. M., & Leblanc, S. G. (2001). Multiple-scattering scheme useful for geometric optical modeling. IEEE Transactions on Geoscience and Remote Sensing, 39, 1061–1071.

    Article  Google Scholar 

  • Chen, J. M., Menges, C., & Leblanc, S. (2005). Global mapping of foliage clumping index using multi-angular satellite data. Remote Sensing of Environment, 97, 447–457.

    Article  Google Scholar 

  • Croft, H., Chen, J. M., Zhang, Y., & Simic, A. (2013). Modelling leaf chlorophyll content in broadleaf and needle leaf canopies from ground, CASI, Landsat TM 5 and MERIS reflectance data. Remote Sensing of Environment, 133, 128–140.

    Article  Google Scholar 

  • Danson, F., & Plummer, S. (1995). Red-edge response to forest leaf area index. International Journal of Remote Sensing, 16, 183–188.

    Article  Google Scholar 

  • Datt, B. (1998). Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a + b, and total carotenoid content in eucalyptus leaves-characterization and applications. Remote Sensing of Environment, 66, 111–121.

    Article  Google Scholar 

  • Datt, B. (1999). Visible/near infrared reflectance and chlorophyll content in eucalyptus leaves. International Journal of Remote Sensing, 20, 2741–2759.

    Article  Google Scholar 

  • Datt, B., & Jupp, D. (2004). Hyperion data processing workshop: hands-on processing instruction. Clayton South: CSIRO Earth Observation Centre.

    Google Scholar 

  • Datt, B., McVicar, T. R., Van Niel, T. G., Jupp, D. L., & Pearlman, J. S. (2003). Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes. IEEE Transactions on Geoscience and Remote Sensing, 41, 1246–1259.

    Article  Google Scholar 

  • Demarez, V., Gastellu-Etchegorry, J., Mougin, E., Marty, G., Proisy, C., Dufrene, E., & Dantec, V. L. (1999). Seasonal variation of leaf chlorophyll content of a temperate forest. Inversion of the PROSPECT model. International Journal of Remote Sensing, 20, 879–894.

    Article  Google Scholar 

  • Driss, H., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81, 416–426.

    Article  Google Scholar 

  • Ganapol, B. D., Johnson, L. F., Hammer, P. D., Hlavka, C. A., & Peterson, D. L. (1998). LEAFMOD: a new within-leaf radiative transfer model. Remote Sensing of Environment, 63, 182–193.

    Article  Google Scholar 

  • Gitelson, A. A., & Merzlyak, M. N. (1996). Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology, 148, 494–500.

    Article  CAS  Google Scholar 

  • Gitelson, A.A., Viña, A., Verma, S.B., Rundquist, D.C., Arkebauer, T.J., Keydan, G., Leavitt, B., Ciganda, V., Burba, G.G., Suyker, A.E. (2006). Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity. Journal of Geophysical Research: Atmospheres (1984–2012) 111.

  • Goodenough, D. G., Dyk, A., Niemann, K. O., Pearlman, J. S., Chen, H., Han, T., Murdoch, M., & West, C. (2003). Processing Hyperion and ALI for forest classification. IEEE Transactions on Geoscience and Remote Sensing, 41, 1321–1331.

    Article  Google Scholar 

  • Hall, F.G., Shimabukuro, Y.E., Huemmrich, K.F. (1995). Remote sensing of forest biophysical structure using mixture decomposition and geometric reflectance models. Ecological Applications, 993–1013.

  • Han, T., Goodenough, D., Dyk, A., Love, J. (2002). Detection and correction of abnormal pixels in Hyperion images, IEEE 2002 International Geoscience and Remote Sensing Symposium, 2002. IGARSS'02 Proceedings, pp. 1327–1330.

  • Holmgren, P., & Thuresson, T. (1998). Satellite remote sensing for forestry planning-a review. Scandinavian Journal of Forest Research, 13, 90–110.

    Article  Google Scholar 

  • Jacquemoud, S., & Baret, F. (1990). PROSPECT: a model of leaf optical properties spectra. Remote Sensing of Environment, 34, 75–91.

    Article  Google Scholar 

  • Le Maire, G., Francois, C., & Dufrene, E. (2004). Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment, 89, 1–28.

    Article  Google Scholar 

  • Leblanc, S. G., Bicheron, P., Chen, J. M., Leroy, M., & Cihlar, J. (1999). Investigation of directional reflectance in boreal forests with an improved four-scale model and airborne POLDER data. IEEE Transactions on Geoscience and Remote Sensing, 37, 1396–1414.

    Article  Google Scholar 

  • Li, X., & Strahler, A. H. (1988). Modeling the gap probability of a discontinuous vegetation canopy. IEEE Transactions on Geoscience and Remote Sensing, 26, 161–170.

    Article  Google Scholar 

  • Li, X., Strahler, A. H., & Woodcock, C. E. (1995). A hybrid geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies. IEEE Transactions on Geoscience and Remote Sensing, 33, 466–480.

    Article  CAS  Google Scholar 

  • Luther, J. E., & Carroll, A. L. (1999). Development of an index of balsam fir vigor by foliar spectral reflectance. Remote Sensing of Environment, 69, 241–252.

    Article  Google Scholar 

  • Miller, J., Hare, E., & Wu, J. (1990). Quantitative characterization of the vegetation red edge reflectance. 1. An inverted-gaussian reflectance model. International Journal of Remote Sensing, 11, 1755–1773.

    Article  Google Scholar 

  • Miller, J., Wu, J., Boyer, M., Belanger, M., & Hare, E. (1991). Seasonal patterns in leaf reflectance red-edge characteristics. International Journal of Remote Sensing, 12, 1509–1523.

    Article  Google Scholar 

  • Moran, J. A., Mitchell, A. K., Goodmanson, G., & Stockburger, K. A. (2000). Differentiation among effects of nitrogen fertilization treatments on conifer seedlings by foliar reflectance: a comparison of methods. Tree Physiology, 20, 1113–1120.

    Article  CAS  Google Scholar 

  • Pearlman, J., Carman, S., Segal, C., Jarecke, P., Clancy, P., & Browne, W. (2001). Overview of the Hyperion imaging spectrometer for the NASA EO-1 mission. IEEE 2001 International Geoscience and Remote Sensing Symposium, 3037, 3036–3038. 2001. IGARSS '01 Proceedings.

    Google Scholar 

  • Peddle, D. R., Franklin, S. E., Johnson, R. L., Lavigne, M. B., & Wulder, M. A. (2003). Structural change detection in a disturbed conifer forest using a geometric optical reflectance model in multiple-forward mode. IEEE Transactions on Geoscience and Remote Sensing, 41, 163–166.

    Article  Google Scholar 

  • Penuelas, J., Baret, F., & Filella, I. (1995). Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 31, 221–230.

    CAS  Google Scholar 

  • Pisek, J., Chen, J. M., Miller, J. R., Freemantle, J. R., Peltoniemi, J. I., & Simic, A. (2010). Mapping forest background reflectance in a boreal region using multiangle compact airborne spectrographic imager data. IEEE Transactions on Geoscience and Remote Sensing, 48, 499–510.

    Article  Google Scholar 

  • Renzullo, L., Blanchfield, A., Guillermin, R., Powell, K., & Held, A. (2006). Comparison of PROSPECT and HPLC estimates of leaf chlorophyll contents in a grapevine stress study. International Journal of Remote Sensing, 27, 817–823.

    Article  Google Scholar 

  • Sampson, P. H., Zarco-Tejada, P. J., Mohammed, G. H., Miller, J. R., & Noland, T. L. (2003). Hyperspectral remote sensing of forest condition: estimating chlorophyll content in tolerant hardwoods. Forest Science, 49, 381–391.

    Google Scholar 

  • Ungar, S. (2001). Overview of EO-1, the first 120 days, IEEE 2001 International Geoscience and Remote Sensing Symposium, 2001. IGARSS'01 Proceedings, pp. 43–45.

  • Verrelst, J., Alonso, L., Camps-Valls, G., Delegido, J., & Moreno, J. (2012). Retrieval of vegetation biophysical parameters using Gaussian process techniques. IEEE Transactions on Geoscience and Remote Sensing, 50, 1832–1843.

    Article  Google Scholar 

  • Wessman, C. A., Aber, J. D., & Peterson, D. L. (1989). An evaluation of imaging spectrometry for estimating forest canopy chemistry. International Journal of Remote Sensing, 10, 1293–1316.

    Article  Google Scholar 

  • Xian-feng, Z., & Micha, P. (2007). Preprocessing, feature extraction and lithologic mapping using EO-1 Hyperion data. Journal of Image and Graphics, 12, 981–990.

    Google Scholar 

  • Yoder, B. J., & Pettigrew-Crosby, R. E. (1995). Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales. Remote Sensing of Environment, 53, 199–211.

    Article  Google Scholar 

  • Zarco-Tejada, P. J., Miller, J., Mohammed, G., Noland, T., & Sampson, P. (2001). Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 39, 1491–1507.

    Article  Google Scholar 

  • Zhang, Y., Chen, J. M., Miller, J. R., & Noland, T. L. (2008). Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery. Remote Sensing of Environment, 112, 3234–3247.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the two anonymous reviewers for their valuable comments. This work was sponsored by “the Fundamental Research Funds for the Central Universities” (DL13BAX07, DL13BAX09) of China.

Conflicts of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiguang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Yu, Y. & Fan, W. Chlorophyll content retrieval from hyperspectral remote sensing imagery. Environ Monit Assess 187, 456 (2015). https://doi.org/10.1007/s10661-015-4682-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4682-4

Keywords

Navigation