Skip to main content
Log in

Kinetic and isotherms studies of phosphorus adsorption onto natural riparian wetland sediments: linear and non-linear methods

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Riparian wetlands provide critical functions for the improvement of surface water quality and storage of nutrients. Correspondingly, investigation of the adsorption characteristic and capacity of nutrients onto its sediments is benefit for utilizing and protecting the ecosystem services provided by riparian areas. The Langmuir and Freundlich isotherms and pseudo-second-order kinetic model were applied by using both linear least-squares and trial-and-error non-linear regression methods based on the batch experiments data. The results indicated that the transformations of non-linear isotherms to linear forms would affect the determination process significantly, but the non-linear regression method could prevent such errors. Non-linear Langmuir and Freundlich isotherms both fitted well with the phosphorus adsorption process (r 2 > 0.94). Moreover, the influences of temperature and ionic strength on the adsorption of phosphorus onto natural riparian wetland sediments were also studied. Higher temperatures were suitable for phosphorus uptake from aqueous solution using the present riparian wetland sediments. The adsorption capacity increased with the enhancement of ionic strength in agreement with the formation of inner-sphere complexes. The quick adsorption of phosphorus by the sediments mainly occurred within 10 min. The adsorption kinetic was well-fitted by pseudo-second-order kinetic model (r 2 > 0.99). The scanning electron microscopy (SEM) and Fourier transformation infrared (FT-IR) spectra analyses before and after phosphorus adsorption revealed the main adsorption mechanisms in the present system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Belgacem, A., Rebiai, R., Hadoun, H., Khemaissia, S., & Belmedani, M. (2014). The removal of uranium (VI) from aqueous solutions onto activated carbon developed from grinded used tire. Environmental Science and Pollution Research, 21, 684–694. doi:10.1007/s11356-013-1940-2.

    Article  CAS  Google Scholar 

  • Chowdhury, S., & Das Saha, P. (2011). Comparative analysis of linear and nonlinear methods of estimating the pseudo-second-order kinetic parameters for sorption of malachite green onto pretreated rice husk. Bioremediation Journal, 15, 181–188. doi:10.1080/10889868.2011.624140.

    Article  CAS  Google Scholar 

  • Du, C., Linker, R., & Shaviv, A. (2008). Identification of agricultural Mediterranean soils using mid-infrared photoacoustic spectroscopy. Geoderma, 143, 85–90. doi:10.1016/j.geoderma.2007.10.012.

    Article  CAS  Google Scholar 

  • Du, S. T., Shentu, J. L., Luo, B. F., Shamsi, I. H., Lin, X. Y., Zhang, Y. S., & Jin, C. W. (2011). Facilitation of phosphorus adsorption onto sediment by aquatic plant debris. Journal of Hazardous Materials, 191, 212–218. doi:10.1016/j.jhazmat.2011.04.067.

    Article  CAS  Google Scholar 

  • Freundlich, H. (1906). Concerning adsorption in solutions. Journal of Physical Chemistry Stoichiometry and Kinship Theory, 57, 385–470.

    CAS  Google Scholar 

  • Hammer, D. A. (1989). Constructed wetlands for wastewater treatment: municipal, industrial and agricultural. CRC Press.

  • Ho, Y. S. (2004). Selection of optimum sorption isotherm. Carbon, 42, 2115–2116. doi:10.1016/j.carbon.2004.03.019.

    Article  CAS  Google Scholar 

  • Ho, Y. S. (2006a). Isotherms for the sorption of lead onto peat: comparison of linear and non-linear methods. Polish Journal of Environmental Studies, 15, 81–86.

    CAS  Google Scholar 

  • Ho, Y. S. (2006b). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136, 681–689. doi:10.1016/j.jhazmat.2005.12.043.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 34, 735–742. doi:10.1016/s0043-1354(99)00232-8.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & Ofomaja, A. E. (2006a). Kinetic studies of copper ion adsorption on palm kernel fibre. Journal of Hazardous Materials, 137, 1796–1802. doi:10.1016/j.jhazmat.2006.05.023.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & Ofomaja, A. E. (2006b). Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber. Journal of Hazardous Materials, 129, 137–142. doi:10.1016/j.jhazmat.2005.08.020.

    Article  CAS  Google Scholar 

  • Karimaian, K. A., Amrane, A., Kazemian, H., Panahi, R., & Zarrabi, M. (2013). Retention of phosphorous ions on natural and engineered waste pumice: characterization, equilibrium, competing ions, regeneration, kinetic, equilibrium and thermodynamic study. Applied Surface Science, 284, 419–431. doi:10.1016/j.apsusc.2013.07.114.

    Article  CAS  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403. doi:10.1021/ja02242a004.

    Article  CAS  Google Scholar 

  • Li, T., Cai, S. M., Yang, H. D., Wang, X. L., Wu, S. J., & Ren, X. Y. (2009). Fuzzy comprehensive-quantifying assessment in analysis of water quality: a case study in Lake Honghu, China. Environmental Engineering Science, 26, 451–458. doi:10.1089/ees.2007.0270.

    Article  CAS  Google Scholar 

  • Long, F., Gong, J. L., Zeng, G. M., et al. (2011). Removal of phosphate from aqueous solution by magnetic Fe-Zr binary oxide. Chemical Engineering Journal, 171, 448–455. doi:10.1016/j.cej.2011.03.102.

    Article  CAS  Google Scholar 

  • Madejova, J., Pentrak, M., Palkova, H., & Komadel, P. (2009). Near-infrared spectroscopy: a powerful tool in studies of acid-treated clay minerals. Vibrational Spectroscopy, 49, 211–218. doi:10.1016/j.vibspec.2008.08.001.

    Article  CAS  Google Scholar 

  • Mallet, M., Barthelemy, K., Ruby, C., Renard, A., & Naille, S. (2013). Investigation of phosphate adsorption onto ferrihydrite by X-ray photoelectron spectroscopy. Journal of Colloid and Interface Science, 407, 95–101. doi:10.1016/j.jcis.2013.06.049.

    Article  CAS  Google Scholar 

  • Su, Y., Liu, J., Yue, Q. Y., Li, Q., & Gao, B. Y. (2014). Adsorption of ammonium and phosphate by feather protein based semi-interpenetrating polymer networks hydrogel as a controlled-release fertilizer. Environmental Technology, 35, 446–455. doi:10.1080/09593330.2013.831461.

    Article  CAS  Google Scholar 

  • Sugiyama, S., & Hama, T. (2013). Effects of water temperature on phosphate adsorption onto sediments in an agricultural drainage canal in a paddy-field district. Ecological Engineering, 61, 94–99. doi:10.1016/j.ecoleng.2013.09.053.

    Article  Google Scholar 

  • Theriot, J. M., Conkle, J. L., Pezeshki, S. R., DeLaune, R. D., & White, J. R. (2013). Will hydrologic restoration of Mississippi River riparian wetlands improve their critical biogeochemical functions? Ecological Engineering, 60, 192–198. doi:10.1016/j.ecoleng.2013.07.021.

    Article  Google Scholar 

  • Tomar, V., Prasad, S., & Kumar, D. (2014). Adsorptive removal of fluoride from aqueous media using Citrus limonum (lemon) leaf. Microchemical Journal, 112, 97–103. doi:10.1016/j.microc.2013.09.010.

    Article  CAS  Google Scholar 

  • USEPA. (2000). Constructed wetlands treatment of municipal wastewaters (Vol. 57). Cincinnati: United States (US) Environmental Protection Agency (EPA), Office of Research and Development.

    Google Scholar 

  • Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380, 48–65. doi:10.1016/j.scitotenv.2006.09.014.

    Article  CAS  Google Scholar 

  • Wang, Q. R., & Li, Y. C. (2010). Phosphorus adsorption and desorption behavior on sediments of different origins. Journal of Soils and Sediments, 10, 1159–1173. doi:10.1007/s11368-010-0211-9.

    Article  CAS  Google Scholar 

  • Wang, Y., Shen, Z. Y., Niu, J. F., & Liu, R. M. (2009). Adsorption of phosphorus on sediments from the Three-Gorges Reservoir (China) and the relation with sediment compositions. Journal of Hazardous Materials, 162, 92–98. doi:10.1016/j.jhazmat.2008.05.013.

    Article  CAS  Google Scholar 

  • Wang, X. Y., Zhang, L. P., Zhang, H., Wu, X. Y., & Mei, D. L. (2012). Phosphorus adsorption characteristics at the sediment-water interface and relationship with sediment properties in FUSHI reservoir, China. Environmental Earth Science, 67, 15–22. doi:10.1007/s12665-011-1476-z.

    Article  Google Scholar 

  • Xue, Y., Hou, H., & Zhu, S. (2009). Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag. Journal of Hazardous Materials, 162, 973–980. doi:10.1016/j.jhazmat.2008.05.131.

    Article  CAS  Google Scholar 

  • Yoo, J. H., Ro, H. M., Choi, W. J., Yoo, S. H., & Han, K. H. (2006). Phosphorus adsorption and removal by sediments of a constructed marsh in Korea. Ecological Engineering, 27, 109–117. doi:10.1016/j.ecoleng.2005.12.001.

    Article  Google Scholar 

  • Zamparas, M., Gianni, A., Stathi, P., Deligiannakis, Y., & Zacharias, I. (2012). Removal of phosphate from natural waters using innovative modified bentonites. Applied Clay Science, 62–63, 101–106. doi:10.1016/j.clay.2012.04.020.

    Article  Google Scholar 

  • Zhang, S. W., & An, W. C. (2013). Adsorbent prepared from red mud and its adsorption characteristics of As(V). Desalination and Water Treatment, 51, 7825–7831. doi:10.1080/19443994.2013.782572.

    Article  CAS  Google Scholar 

  • Zhang, L., Wang, M. H., Hu, J., & Ho, Y. S. (2010a). A review of published wetland research, 1991–2008: ecological engineering and ecosystem restoration. Ecological Engineering, 36, 973–980. doi:10.1016/j.ecoleng.2010.04.029.

    Article  Google Scholar 

  • Zhang, L., Hong, S., He, J., Gan, F. X., & Ho, Y. S. (2010b). Isotherm study of phosphorus uptake from aqueous solution using aluminum oxide. Clean: Soil Air Water, 38, 831–836. doi:10.1002/clen.200900305.

    CAS  Google Scholar 

  • Ziegel, E. R. (1991). Handbook of Nonlinear Regression Models Technometrics, 33, 240–241.

Download references

Acknowledgments

The authors thank the support by the National Natural Science Foundation of China (41001333 and 41471433), the National Key Technology R&D Program of China (2012BAC06B03), the Central Public-interest Scientific Institution Basal Research Fund (2014–37), and Executive Office of Three Gorges Project Construction Committee State Council of the People’s Republic of China (JJ2013012JC011707).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Du, C., Du, Y. et al. Kinetic and isotherms studies of phosphorus adsorption onto natural riparian wetland sediments: linear and non-linear methods. Environ Monit Assess 187, 381 (2015). https://doi.org/10.1007/s10661-015-4621-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4621-4

Keywords

Navigation