Skip to main content
Log in

Identification and analysis of polyaromatic hydrocarbons (PAHs)—biodegrading bacterial strains from refinery soil of India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Polyaromatic hydrocarbons (PAHs) utilizing bacteria were isolated from soils of seven sites of Mathura refinery, India. Twenty-six bacterial strains with different morphotypes were isolated. These strains were acclimatized to utilize a mixture of four polycyclic aromatic hydrocarbons, i.e., anthracene, fluorene, phenanthrene, and pyrene, each at 50 mg/L concentration as sole carbon source. Out of total isolates, 15 potent isolates were subjected to 16S rDNA sequencing and identified as a member of diverse genera, i.e., Bacillus, Acinetobacter, Stenotrophomonas, Alcaligenes, Lysinibacillus, Brevibacterium, Serratia, and Streptomyces. Consortium of four promising isolates (Acinetobacter, Brevibacterium, Serratia, and Streptomyces) were also investigated for bioremediation of PAH mixture. This consortium was proved to be efficient PAH degrader resulting in 40–70 % degradation of PAH within 7 days. Results of this study indicated that these genera may play an active role in bioremediation of PAHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Annweiler, E., Materna, A., Safinowski, M., Kappler, A., Richnow, H. H., Michaelis, W., & Meckenstock, R. U. (2000). Anaerobic degradation of 2-methylnaphthalene by a sulfate-reducing enrichment culture. Applied Environmental Microbiology, 66, 5329–5333.

    Article  CAS  Google Scholar 

  • Arulazahan, P., & Vasudevan, N. (2011). Role of nutrients in the utilization of polycyclic aromatic hydrocarbons by halotolerant bacterial strain. Journal of Environmental Science, 23, 282–287.

    Article  Google Scholar 

  • Baboshin, M., Akimov, V., Baskunov, B., Born, T. L., Khan, S. U., & Golovleva, L. (2008). Conversion of polycyclic aromatic hydrocarbons by Sphingomonas sp. VKM B-2434. Biodegradation, 19, 567–576.

    Article  CAS  Google Scholar 

  • Boonchan, S., Britz, M. L., & Stanley, G. A. (1998). Surfactant- enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia. Biotechnology Bioengineering, 59, 482–494.

    Article  CAS  Google Scholar 

  • Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource Technology, 74, 63–67.

    Article  CAS  Google Scholar 

  • Bull, A. T., Goodfellow, M., & Slater, J. H. (1992). Biodiversity as a source of innovation in biotechnology. Annual Reviews of Microbiology, 46, 219–252.

    Article  CAS  Google Scholar 

  • Bushnell, L. D., & Haas, H. F. (1941). The utilization of certain hydrocarbons by microorganisms. Journal of Bacteriology, 41, 653–673.

    CAS  Google Scholar 

  • Charles, T. C., & Nester, E. W. (1993). A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens. Journal of Bacteriology, 175, 6614–6625.

    CAS  Google Scholar 

  • Chaudhary, P., Sharma, R., Singh, S. B., Chaudhary, P., Sharma, R., Singh, S. B., & Lata. (2011). Bioremediation of PAH by Streptomyces sp. Bulletin of Environmental Contamination and Toxicology, 86, 268–271.

    Article  CAS  Google Scholar 

  • Chaudhary, P., Singh, S. B., Chaudhry, S., & Lata. (2012). Impact of PAH on biological health parameters of soils of an Indian refinery and adjoining agricultural area-A case study. Environmental Assessment and Monitoring, 184(2), 1145–1156.

    Article  CAS  Google Scholar 

  • Chhatre, S., Purohit, H., Shanker, R., & Khanna, P. (1996). Bacterial consortia for crude oil spill remediation. Water Science and Technology, 34, 187–193.

    Article  CAS  Google Scholar 

  • Cybulski, Z., Dziurla, E., Kaczorek, E., & Olszanowski, A. (2003). The influence of emulsifiers on hydrocarbon biodegradation by Pseudomondacea and Bacillaea strains. Spill Science Technology Bulletin, 8, 503–507.

    Article  CAS  Google Scholar 

  • De Carvalho, C. C. C. R., Parreno-Marchante, B., Neumann, G., da Fonseca, M. M. R., & Heipieper, H. J. (2005). Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Applied Microbiology Biotechnology, 67, 383–388. doi:10.1007/s00253-004-1750-z.

    Article  CAS  Google Scholar 

  • Di Gennaro, P., Rescalli, E., Galli, E., Sello, G., & Bestetti, G. (2001). Characterization of Rhodococcus opacus R7, a strain able to degrade naphthalene and o-xylene isolated from a polycyclic aromatic hydrocarbon-contaminated soil. Research Microbiology, 152(7), 641–651. doi:10.1016/S0923-2508(01)01243-8.

    Article  Google Scholar 

  • Edwards, U., Rogall, T., Blocker, H., Emde, M., & Böttger, E. C. (1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acid Research, 19(19), 7843–7853.

    Article  Google Scholar 

  • Farhadian, M., Vachelard, C., Duchez, D., & Larroche, C. (2008). In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresource Technology, 99, 5296–5308. doi:10.1016/j.biortech.2007.10.025.

    Article  CAS  Google Scholar 

  • Gurjeet, P., Kothiyal, N. C., & Kumar, V. (2014). Bioremediation of some polycyclic aromatic hydrocarbons (PAH) from soil using Sphingobium indicum, Sphingobium japonicum and Stenotrophomonas maltophilia bacterial strains under aerobic conditions. Journal of Environmental Research and Development, 8, 396–405.

    Google Scholar 

  • Hamamura, N., Ward, D. M., & Inskeep, W. P. (2013). Effects of petroleum mixture types on soil bacterial population dynamics associated with the biodegradation of hydrocarbons in soil environments. FEMS Microbiology Ecology, 85, 168–178.

    Article  Google Scholar 

  • Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Material, 169, 1–15.

    Article  CAS  Google Scholar 

  • Herrenkohl, M. J., Lunz, J. D., Sheets, R. G., & Wakeman, J. S. (2001). Environmental impacts of PAH and oil release as a NAPL or as contaminated pore water from the construction of a 90-cm in situ isolation cap. Environmental Science Technology, 35, 4927–4932.

    Article  CAS  Google Scholar 

  • Juhasz, A. L., Stanley, G. A., & Britz, M. L. (2000). Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Letters in Applied Microbiology, 30, 396–401.

    Article  CAS  Google Scholar 

  • Kanaly, R. A., & Harayama, S. (2000). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. Journal of Bacteriology, 182, 2059–2067.

    Article  CAS  Google Scholar 

  • Kang, H., Hwang, S. Y., Kim, Y. M., Kim, E., Kim, Y. S., & Kim, S. K. (2003). Degradation of phenanthrene and naphthalene by a Burkholderia species strain. Canadian Journal of Microbiology, 49, 39–144.

    Article  Google Scholar 

  • Kim, Y. H., Engesser, K. H., & Cerniglia, C. E. (2003). Two polycyclic aromatic hydrocarbon o-quinone reductases from a pyrene-degrading Mycobacterium. Archives of Biochemistry Biophysics, 416, 209–217.

    Article  CAS  Google Scholar 

  • Krauss, M., Wilcse, W., & Zech, W. (2000). Availability of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) to earthworms in urban soils. Environmental Science Technology, 34, 4335–4340.

    Article  CAS  Google Scholar 

  • Lindstrom, J. E., Barry, R. P., & Braddock, J. F. (1999). Long-term effect on microbial communities after a sub artic oil spill. Soil Biology and Biochemistry, 31, 1677–1689.

    Article  CAS  Google Scholar 

  • Mukherjee, S., Das, P., & Sen, R. (2009). Rapid quantification of a microbial surfactant by a simple turbidometric method. Journal of Microbiology Methods, 76, 38–42.

    Article  CAS  Google Scholar 

  • Nam, J. J., Song, B. H., Eom, K. C., Lee, S. H., & Smith, A. (2003). Distribution of polycyclic aromatic hydrocarbons (PAHs) in agricultural soils in South Korea. Chemosphere, 50, 1281–1289.

    Article  CAS  Google Scholar 

  • Pandey, G., & Jain, R. K. (2002). Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Applied Environmental Microbiology, 68, 5789–5795.

    Article  CAS  Google Scholar 

  • Pumphrey, G. M., & Madsen, E. L. (2007). Naphthalene metabolism and growth inhibition by naphthalene in Polaromonas naphthalenivorans strain CJ2. Microbiology, 153, 3730–3738. doi:10.1099/mic.0.2007/010728-0.

    Article  CAS  Google Scholar 

  • Rengarajan, T., Rajendran, P., Nandakumar, N., Lokeshkumar, B., Rajendran, P., & Nishigaki, I. (2015). Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pacific Journal of Tropical Biomedicine, 5, 182–189.

    Article  Google Scholar 

  • Schluep, M., Imboden, D. M., Galli, R., & Zeyer, J. (2001). Mechanisms affecting the dissolution of non aqueous phase liquids into the aqueous phase in slow stirring batch system. Environmental Toxicology Chemistry, 20, 459–466.

    Article  CAS  Google Scholar 

  • Sharma, M., & Rawat, M. K. (2013). Study on polycyclic aromatic hydrocarbons and poly chlorinated biphenyls yearly based concentration in waste oil-sludge at Mathura-Agra Region. Journal of Current Chemical & Pharmaceutical Sciences, 3(1), 16–22.

    Google Scholar 

  • Shiaris, M. P. (1989). Seasonal biotransformation of naphthalene, phenanthrene and benzo (a) pyrene in superficial estuarine sediments. Applied Environmental Microbiology, 55, 1391–1399.

    CAS  Google Scholar 

  • Watanabe, K. (2001). Microorganisms relevant to bioremediation. Current Opinions in Biotechnology, 12, 237–241.

    Article  CAS  Google Scholar 

  • Wick, L. Y., Colangelo, T., & Harms, H. (2001). Kinetics of mass transfer-limited bacterial growth on solid PAHs. Environmental Science Technology, 35, 354–361.

    Article  CAS  Google Scholar 

  • Wong, J. W. C., Fang, M., Zhao, Z., & Xing, B. (2004). Effect of surfactants on solubilization and degradation of phenanthrene under thermophilic conditions. Journal of Environmental Quality, 33, 2015–2025.

    Article  CAS  Google Scholar 

  • Zhang, W., Wang, H., Zhang, R., Yu, X. Z., Qian, P. Y., & Wong, M. H. (2010). Bacterial communities in PAH contaminated soils at an electronic-waste processing center in China. Ecotoxicology, 19, 96–104.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial assistance provided by the Indian council of Agricultural Research, New Delhi through AMAAS network project is gratefully acknowledged. The authors are also grateful to the division of Microbiology and Agricultural chemicals for providing the necessary facilities to undertake this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lata Nain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, P., Sahay, H., Sharma, R. et al. Identification and analysis of polyaromatic hydrocarbons (PAHs)—biodegrading bacterial strains from refinery soil of India. Environ Monit Assess 187, 391 (2015). https://doi.org/10.1007/s10661-015-4617-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4617-0

Keywords

Navigation