Skip to main content
Log in

Statistical characteristics of selected elements in vegetables from Kosovo

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Zinc, copper, iron, chromium and cobalt are essential elements for human health, showing toxicity only in high concentrations, while lead and cadmium are extremely toxic even as traces. Therefore, it is important to monitor the contents of toxic metals in vegetables. Large number of vegetables is grown and used in nutrition, in Kosovo. The concentrations of selected elements in vegetables (radish, onion, garlic and spinach) from Kosovo were determined using ICP-OES method. Oral intake of metals and health risk index were calculated. Statistical analysis indicated numerous positive correlations between concentrations of selected elements in vegetables. As a result of principal component analysis, 15 new variables were obtained which were characterized by eigenvalues. The sequence of health quotients for the heavy metals followed the decreasing order Zn = Mn > Pb > Cu > Ni > Fe > Cd > Co > Cr. The health quotients for all investigated heavy metals were below 1 (one), which is considered safe. The vegetables from Kosovo are mainly safe for use in everyday diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akan, J. C., Kolo, B. G., Yikala, B. S., & Ogugbuaja, V. O. (2013). Determination of some heavy metals in vegetable samples from Biu local government area, Borno State, North Eastern Nigeria. International Journal of Environmental Monitoring and Analysis, 1(2), 40–46.

    Article  CAS  Google Scholar 

  • Al-Chaarani, N., El-Nakat, J. H., Obeid, P. J., & Aouad, S. (2009). Measurement of levels of heavy metal contamination in vegetables grown and sold in selected areas in Lebanon. Jordan Journal of Chemistry, 4(3), 303–315.

    CAS  Google Scholar 

  • Ali, M. H. H., & Al-Qahtani, K. M. (2012). Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. Egyptian Journal of Aquatic Research, 38, 31–37.

    Article  Google Scholar 

  • Boon, D. Y., & Soltanpour, P. N. (1992). Lead, cadmium, and zinc contamination of Aspen garden soils and vegetation. Journal of Environmental Quality, 21, 82–86.

    Article  CAS  Google Scholar 

  • Davies, B. E., & White, H. M. (1981). Trace elements in vegetables grown on soils contaminated by base metal mining. Journal of Plant Nutrition, 2, 387–395.

    Article  Google Scholar 

  • Delbari, A. S., & Kulkarni, D. K. (2013). Determination of heavy metal pollution in vegetables grown along the roadside in Tehran—Iran. Annals of Biological Research, 4(2), 224–233.

    CAS  Google Scholar 

  • Delibacak, S., Elmaci, O. L., Secer, M. & Bodur, A. (2002). Trace element and heavy metal concentrations in fruits and vegetables of the Gediz River region. International Journal of Water, 2(2/3).

  • Ejaz ul, I., Xiao-e, Y., Zhen-li, H., & Qaisar, M. (2007). Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. Journal of Zhejiang University Science B, 8(1), 1–13.

    Google Scholar 

  • Elbagermi, M. A., Edwards, H. G. M., & Alajtal, A. I. (2012). Monitoring of heavy metal content in fruits and vegetables collected from production and market sites in the Misurata area of Libya. ISRN Analytical Chemistry, 827645, 5.

    Google Scholar 

  • Food and Nutritional Board, (2004). Recommended intake for individuals. Dietary reference intakes ([DRis)]. Washington, DC: National Academy of Sciences.

    Google Scholar 

  • Friberg, L., Nordberg, G. F., & Vpuk, B. (1984). Handbook on the toxicity of metals. Amsterdam: Elsevier. North Holland, Bio Medical Press.

    Google Scholar 

  • Garcia-Rico, L., Leyva-Perez, J., & Jara-Marini, M. E. (2007). Content and daily intake of copper, zinc, lead, cadmium, and mercury from dietary supplements in Mexico. Food and Chemical Toxicology, 45, 1599–1605.

    Article  CAS  Google Scholar 

  • Gladyshev, M. I., Sushchik, N. N., Anishchenko, O. V., Makhutova, O. N., Kalachova, G. S., & Gribovskaya, I. V. (2009). Benefit-risk ratio of food fish intake as the source of essential fatty acids vs. heavy metals: a case study of Siberian grayling from the Yenisei river. Food Chemistry, 115, 545–550.

    Article  CAS  Google Scholar 

  • Guenther, P. M., Dodd, K. W., Reedy, J., & Krebs-Smith, S. M. (2006). Most Americans eat much less than recommended amounts of fruits and vegetables. Journal of the American Dietetic Association, 106(9), 1371–1379.

    Article  Google Scholar 

  • Guerra, F., Trevizam, A. R., Muraoka, T., Marcante, N. C., & Csnniatti-Brazaca, S. G. (2012). Heavy metals in vegetables and potential risk for human health. Scientia Agricola, 69(1), 54–60.

    CAS  Google Scholar 

  • Hague, T., Petroczi, A., Andrews, P. L. R., Barker, J., & Naughton, D. P. (2008). Determination of metal ion content of beverages and estimation of target hazard quotients: a comparative study. Chemistry Central Journal, 2, 13.

    Article  Google Scholar 

  • Harmanescu, M., Alda, L. M., Bordean, D. M., Gogoasa, I., & Gergen, I. (2011). Heavy metals health risk assessment for population via consumption of vegetables grown in old mining area; a case study: Banat County, Romania. Chemistry Central Journal, 5, 64–73.

    Article  CAS  Google Scholar 

  • Horel, J. D. (1981). A rotated principal component analysis of the interannual variability of the Northern Hemisphere 500 mb height field. Monthly Weather Review, 109, 2080–2092.

    Article  Google Scholar 

  • Horel, J. D. (1984). Complex principal component analysis: theory and examples. Journal of Climate and Applied Meteorology, 23, 1660–1673.

    Article  Google Scholar 

  • Kachenko, A. G., & Singh, B. (2006). Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water, Air, & Soil Pollution, 169, 101–123.

    Article  CAS  Google Scholar 

  • Kalaskar, M. M. (2012). Quantitative analysis of heavy metals from vegetable of Amba Nalain Amravati District. Der Pharma Chemica, 4(6), 2373–2377.

    CAS  Google Scholar 

  • Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152, 686–692.

    Article  CAS  Google Scholar 

  • Kihampa, C., Mwegoha, W. J. S., & Shemdoe, R. S. (2011). Heavy metals concentrations in vegetables grown in the vicinity of the closed dumpsite. International Journal of Environmental Sciences, 2(2), 889–895.

    CAS  Google Scholar 

  • Mahaffey, K. R., Capar, S. G., Gladen, B. C., & Fowler, B. A. (1981). Concurrent exposure to lead, cadmium, and arsenic. Effects on toxicity and tissue metal concentrations in the rat. Journal of Laboratory and Clinical Medicine, 98(4), 463–481.

    CAS  Google Scholar 

  • Maksimovic, I., Putnik-Delic, M., Ilin, Z., & Mirosavljevic, M. (2012). Essential (Cu and Zn) and trace (Pb and Cd) heavy metal loads in onion and potato. Agroknowledge Journal, 13(1), 113–122.

    Google Scholar 

  • Markovic, M., Cupac, S., Djurovic, R., Milinovic, J., & Kljajic, P. (2010). Assessment of heavy metal and pesticide levels in soil and plant products from agricultural area of Belgrade, Serbia. Archives of Environmental Contamination and Toxicology, 58, 341–351.

    Article  CAS  Google Scholar 

  • McLaughlin, M. J., Parker, D. R., & Clarke, J. M. (1999). Metals and micronutrients—food safety issues. Field Crops Research, 60, 143–163.

    Article  Google Scholar 

  • Mohammed, N. K., & Khamis, F. O. (2012). Assessment of heavy metal contamination in vegetables consumed in Zanzibars. Natural Sciences, 4(8), 588–594.

    CAS  Google Scholar 

  • Nahar Jolly, Y., Islam, A., & Akbar, S. (2013). Transfer of metals from soil to vegetables and possible health risk assessment. Springerplus, 2, 385–392.

    Article  Google Scholar 

  • Naser, H. M., Sultana, S., Mahmud, N. U., Gomes, R., & Noor, S. (2011). Heavy metal levels in vegetables with growth stage and plant species variations. Bangladesh Journal of Agricultural Research, 36(4), 563–574.

    Google Scholar 

  • Naughton, D. P., & Petroczi, A. (2008). Heavy metal ions in wines: meta-analysis of target hazard quotients reveals health risks. Chemistry Central Journal, 2, 22.

    Article  Google Scholar 

  • Nedelkoska, T. V., & Doran, P. M. (2000). Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. Biotechnology and Bioengineering, 67(5), 607–615.

    Article  CAS  Google Scholar 

  • Nirmal Kumar, J. I., Hiren, S., & Kumar, R. N. (2007). Characterization of heavy metals in vegetables using inductive coupled plasma analyzer (ICPA). Journal of Applied Sciences and Environmental Management, 11(3), 75–79.

    Google Scholar 

  • Official Gazette, no. 5/92. 11/92-corrected and 32/2002 and “Official Gazette RS”. No. 25/2010-another regulation and 28/2011-another regulation: Pravilnik o količinama pesticida, metala i metaloida i drugih otrovnih supstancija, hemioterapika, anabolika i drugih supstancija koje se mogu nalaziti u namirnicama, “Sl. list SRJ”, br. 5/92, 11/92 –isp. i 32/2002 i “Sl. glasnik RS”, br. 25/2010-dr. pravilnik i 28/2011-dr. pravilnik (in Serbian).

  • Oti Wilberforce, J. O., & Nwabue, F. I. (2013). Heavy metals effect due to contamination of vegetables from Enyigba lead mine in Ebonyi state, Nigeria. Environment and Pollution, 2(1), 19–26.

    CAS  Google Scholar 

  • Petroczi, A., & Naughton, D. P. (2009). Mercury, cadmium and lead contamination in seafood: a comparative study to evaluate the usefulness of target hazard quotients. Food and Chemical Toxicology, 47, 298–302.

    Article  CAS  Google Scholar 

  • Powers, K. M., Smith-Weller, T., Franklin, G. M., Longstreth, W. T., Swanson, P. D., & Checkoway, H. (2003). Parkinson’s disease risks associated with dietary iron, manganese, and other nutrient intakes. Neurology, 60, 1761–1766.

    Article  CAS  Google Scholar 

  • Radwan, M. A., & Salama, K. A. (2006). Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food and Chemical Toxicology, 44, 1273–1278.

    Article  CAS  Google Scholar 

  • Randjelovic, S. S., Kostic, D. A., Arsic, B. B., Mitic, S. S., Rasic, I. D., Mitic, M. N., Dimitrijevic, D. S., & Stojanovic, G. S. (2015). Chemometric analysis of grapes. Open Chemistry, 13, 675–682.

    CAS  Google Scholar 

  • Randjelovic, S. S., Kostic, D. A., Stojanovic, G. S., Mitic, S. S., Mitic, M. N., Arsic, B. B., & Pavlovic, A. N. (2014). Metals content of soil, leaves and wild fruit from Serbia. Central European Journal of Chemistry, 12(11), 1144–1151.

    Article  CAS  Google Scholar 

  • Shacklette, H. T. (1980). Elements in fruits, and vegetables from areas of commercial production in the conterminous United States. U. S. Geological Survey, 1178, 149–165.

    Google Scholar 

  • Singh, A., Sharma, R. K., Agrawal, M., & Marshall, F. M. (2010). Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated area of Varanasi, India. Tropical Ecology, 51(2S), 375–387.

    CAS  Google Scholar 

  • Somasundaram, J. (2003). Imbibing toxic/heavy metals through leafy vegetables. In: The Hindu. Online edition of India’s national newspaper. 6th November. The Hindu. 2003. Vegetables eating up vegetarians. The Hindu. 27th March. New Delhi.

  • Storelli, M. M. (2008). Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food and Chemical Toxicology, 46, 2782–2788.

    Article  CAS  Google Scholar 

  • Thompson, H. C., & Kelly, W. C. (1990). Vegetable crops. New Delhi: McGraw Hill Publishing Company Ltd.

    Google Scholar 

  • U. S. Environmental Protection Agency (US EPA). (1989). Risk assessment guidance for superfund: human health evaluation manual ([part a)]. Washington, DC: Interim Final U. S. Environmental Protection Agency. ([EPA/540/1-89/002)].

    Google Scholar 

  • U. S. Environmental Protection Agency [US EPA]. (2010). Integrated Risk Information System.

  • Wold, H. (1973). Non-linear iterative partial least squares (NIPALS) modelling. Some current developments. In P. R. Krishnaiah (Ed.), Multivariate analysis (pp. 383–407). New York: Academic.

    Google Scholar 

  • World Health Organisation ([WHO)], & WHO. (1993). Evaluation of certain food additives and contaminants (Forty-first report of the joint FAO/WHO expert committee on food additives). Geneva: WHO. WHO Technical Series, 837.

    Google Scholar 

Download references

Compliance with ethical standards

Funding

This work was supported by the Ministry of Education, Science and Technological Development Republic of Serbia, Project No. TR34025 and 174007.

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biljana Arsic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Micic, R., Mitic, S., Arsic, B. et al. Statistical characteristics of selected elements in vegetables from Kosovo. Environ Monit Assess 187, 389 (2015). https://doi.org/10.1007/s10661-015-4606-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4606-3

Keywords

Navigation