Environmental risk of heavy metal pollution and contamination sources using multivariate analysis in the soils of Varanasi environs, India

  • Shubhra Singh
  • N. Janardhana Raju
  • Sadaf Nazneen


This study assessed soil pollution in the Varanasi environs of Uttar Pradesh in India. Assessing the concentration of potentially harmful heavy metals in the soils is imperative in order to evaluate the potential risks to human. To identify the concentration and sources of heavy metals and assess the soil environmental quality, 23 samples were collected from different locations covering dumping, road and agricultural area. The average concentrations of the heavy metals were all below the permissible limits according to soil quality guidelines except Cu (copper) and Pb (lead) in dumping and road soils. Soil heavy metal contamination was assessed on the basis of geoaccumulation index (Igeo), pollution index (PI) and integrated pollution index (IPI). The IPI of the metals ranged from 0.59 to 9.94, with the highest IPI observed in the dumping and road soils. A very significant correlation was found between Pb and Cu. The result of principal component analysis suggested that PC1 was mainly affected by the use of agrochemicals, PC2 was affected by vehicular emission and PC3 was affected by dumping waste. Meanwhile, PC4 was mainly controlled by parent material along with anthropogenic activities. Appropriate measures should be taken to minimize the heavy metal levels in soils and thus protect human health.


Heavy metal Soil environmental quality Principal component analysis Varanasi 


  1. Adriano, D. C. (2001). Trace elements in terrestrial environments. Biogeochemistry, bioavailability and risks of metals. New York: Springer-Verlag.CrossRefGoogle Scholar
  2. Allen, S. E., Grimshaw, H. M., & Rowland, A. P. (1986). Chemical analysis. In Moore, P. D., & Chapman, S. B. (Eds.), Method in plant ecology (pp. 285–344). Oxford, London: Blackwell Scientific publication.Google Scholar
  3. Allison, F. A. (1973). Soil organic matter and its role in crop production. Amsterdam: Elsevier.Google Scholar
  4. Awashthi, S. K. (2000). Prevention of Food Adulteration Act no 37 of 1954. Central and State rules as amended for 1999 (3rd ed.). New Delhi: Ashoka Law House.Google Scholar
  5. Bhuiyan, M. A. H., Parvez, L., Islam, M. A., Dampare, S. B., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173, 384–392. doi: 10.1016/j.jhazmat.2009.08.085.CrossRefGoogle Scholar
  6. Chen, T. B., Wong, W. J. C., Zhou, H. Y., & Wong, M. H. (1997). Assessment of trace metal distribution and contamination in surface soil of Hong Kong. Environmental Pollution, 96(1), 61–68.CrossRefGoogle Scholar
  7. Chen, T. B., Zheng, Y. M., Lei, M., Huang, Z. C., Wu, H. T., Chen, H., Fan, K. K., Yu, K., Wu, X., & Tian, Q. Z. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60(4), 542–551.CrossRefGoogle Scholar
  8. Chen, T., Liu, X., Zhu, M., Zhao, K., Wu, J., Xu, J., & Huang, P. (2008). Identification of trace element sources and associated risk assessment in vegetable soils of the urban-rural transitional area of Hangzhou, China. Environmental Pollution, 151(1), 67–78.CrossRefGoogle Scholar
  9. Cheng, Z., Lee, L., Dayan, S., Grinshtein, M., & Shaw, R. (2011). Speciation of heavy metals in garden soils: evidences from selective and sequential chemical leaching. Journal of Soils and Sediments, 11, 628–638.CrossRefGoogle Scholar
  10. Cyrys, J., Stolzel, M., Heinrich, J., Kreyling, W. G., Menzel, N., Wittmaack, K., Tuch, T., & Wichmann, H. E. (2003). Elemental composition and sources of fine and ultrafine ambient particles in Erfurt, Germany. Science of the Total Environment, 305(1-3), 143–156.CrossRefGoogle Scholar
  11. DeMiguel, E., Llamas, J. F., Chacon, E., Berg, T., Larssen, S., Royset, O., & Vadset, M. (1997). Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead. Atmospheric Environment, 31(17), 2733–2740.CrossRefGoogle Scholar
  12. Dong, X., Li, C., Li, J., Wang, J., Liu, S., & Ye, B. (2010). A novel approach for soil contamination assessment from heavy metal pollution: a linkage between discharge and adsorption. Journal of Hazardous Materials, 175(1-3), 1022–1030. doi: 10.1016/j.jhazmat.2009.10.112.CrossRefGoogle Scholar
  13. EI Hamiani, O., EI Khalil, H., Lounate, K., Sirguey, C., Hafidi, M., Bitton, G., Schwartz, C., & Boularbah, A. (2010). Toxicity assessment of garden soils in the vicinity of mining areas in Southern Morocco. Journal of Hazardous Materials, 177(1-3), 755–761. doi: 10.1016/j.jhazmat.2009.12.096.CrossRefGoogle Scholar
  14. Canadian soil Environmental Quality Guidelines (2002) Summary table for soil quality guidelines.Google Scholar
  15. Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114(3), 313–324.CrossRefGoogle Scholar
  16. Faiz, Y., Tufail, M., Javed, M. T., Chaudhry, M. M., & Siddique, N. (2009). Road dust pollution of Cd, Cu, Ni, Pb and Zn along Islamabad Expressway, Pakistan. Microchemical Journal, 92, 186–192. doi: 10.1016/j.microc.2009.03.009.CrossRefGoogle Scholar
  17. Friedlander, S. K. (1973). Chemical element balances and identification of air pollution sources. Environmental Science and Technology, 7(3), 235–240. doi: 10.1021/es60075a005.CrossRefGoogle Scholar
  18. Garcia, R., Maiz, I., & Millan, E. (1996). Heavy metal contamination analysis of road soils and grasses from Gipuzkoa (Spain). Environmental Technology, 17, 763–770.CrossRefGoogle Scholar
  19. Godt, J., Scheidig, F., Grosse-Siestrup, C., Esche, V., Brandenburg, P., Reich, A., & Groneberg, D. A. (2006). The toxicity of cadmium and resulting hazards for human health. Journal of Occupational Medicine and Toxicology, 1, 22.CrossRefGoogle Scholar
  20. Goswami, U., & Sarma, H. P. (2008). Study of the impact of municipal solid waste dumping on soil quality in Guwahati City. Pollution Research, 27(2), 327–330.Google Scholar
  21. Gray, C. W., McLaren, R. G., & Roberts, A. H. C. (2003). Atmospheric accessions of heavy metals to some New Zealand pastoral soils. Science of the Total Environment, 305(1-3), 105–115.CrossRefGoogle Scholar
  22. IARI (2011) Methods manual soil testing in India, New Delhi.Google Scholar
  23. Järup, L., Berglund, M., Elinder, C. G., Nordberg, G., & Vahter, M. (1998). Health effects of cadmium exposure—a review of the literature and a risk estimate. Scandinavian Journal of Work, Environment and Health, 24, 1–51.CrossRefGoogle Scholar
  24. Ji, Y., Feng, Y., Wu, J., Zhu, T., Bai, Z., & Duan, C. (2008). Using geoaccumulation index to study source profiles of soil dust in China. Journal of Environmental Sciences, 20(5), 571–578.CrossRefGoogle Scholar
  25. Kalembkiewicz, J., Sitarz-Palczak, E., & Zapała, L. (2008). A study of the chemical forms or species of manganese found in coal fly ash and soil. Microchemical Journal, 90, 37–43. doi: 10.1016/j.microc.2008.03.003.CrossRefGoogle Scholar
  26. Khoshgoftarmanesh, A. H., & Kalbasi, M. (2002). Effect of municipal waste leachate on soil properties and growth and yield of rice. Communications in Soil Science and Plant Analysis, 33, 13–14. doi: 10.1081/ CSS-120005745.CrossRefGoogle Scholar
  27. Kong, S. F., Lu, B., Ji, Y. Q., Zhao, X. Y., Chen, L., Li, Z. Y., Han, B., & Bai, Z. P. (2011). Levels, risk assessment and sources of PM10 fraction heavy metals in four types dust from a coal based city. Microchemical Journal, 98, 280–290. doi: 10.1016/j.microc.2011.02.012.CrossRefGoogle Scholar
  28. Kowalczyk, G. S., Gordon, G. E., & Rheingrover, S. W. (1982). Identification of atmospheric particulate sources in Washington, D.C., using chemical element balances. Environmental Science and Technology, 16, 79–90.CrossRefGoogle Scholar
  29. Liu, P., Zhao, H., Wang, L., Liu, Z., Wei, J., Wang, Y., Jiang, L., Dong, L., & Zhang, Y. (2011). Analysis of heavy metal sources for vegetable soils from Shandong Province, China. Agricultural Sciences in China, 10(1), 109–119.CrossRefGoogle Scholar
  30. Loska, K., & Wiechuya, D. (2003). Application of principle component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere, 51(8), 723–733.CrossRefGoogle Scholar
  31. Lu, X., Wang, L., Lei, K., Huang, J., & Zhai, Y. (2009). Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. Journal of Hazardous Materials, 161(2-3), 1058–1062. doi: 10.1016/j.jhazmat.2008.04.052.CrossRefGoogle Scholar
  32. Lucho-Constantino, C. A., Alvarez-Suárez, M., Beltrán-Hernández, R. I., Prieto-García, F., & Poggi-Varaldo, H. M. (2005). A multivariate analysis of the accumulation and fractionation of major and trace elements in agricultural soils in Hidalgo State, Mexico irrigated with raw wastewater. Environmental International, 31(3), 313–323.CrossRefGoogle Scholar
  33. Martin, A. C., Rivero, V. C., & Marin, M. T. L. (1998). Contamination by heavy metals in soils in the neighborhood of a scrapyard of discarded vehicles. Science of the Total Environment, 212, 145–152.CrossRefGoogle Scholar
  34. Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65, 863–872.CrossRefGoogle Scholar
  35. Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.Google Scholar
  36. Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. In A. L. Page et al. (Eds.), Methods of soil analysis. Part 2 (Agronomy monograph, Vol. 9, pp. 403–430). Madison: ASA and SSSA.Google Scholar
  37. Panahpour, E., Gholami, A., & Beni, Z. H. M. (2010). Effect of leachate on plant nutrition and reduction of environmental pollution. International Journal of Agronomy and Plant Production, 1(2), 68–72.Google Scholar
  38. Patel, K. S., Shukla, A., Tripathi, A. N., & Hoffmann, P. (2001). Heavy metal concentrations of precipitation in east Madhya Pradesh of India. Water, Air, and Soil Pollution, 130, 463–468.CrossRefGoogle Scholar
  39. Raju, N. J. (2006). Seasonal evaluation of hydro-geochemical parameters using correlation and regression analysis. Current Science, 91(6), 820–826.Google Scholar
  40. Raju, N. J. (2012). Arsenic exposure through groundwater in the middle Ganga plain in the Varanasi environs, India: a future threat. Journal of Geological Society of India, 79, 302–314.CrossRefGoogle Scholar
  41. Raju, N. J., Kotaiah, B., & Reddy, T. V. K. (1991). Biogeochemical aspects in and around a sewage farm at Tirupati, Andhra Pradesh, India. Environmental Conservation, 18(3), 267–269.CrossRefGoogle Scholar
  42. Raju, N. J., Ram, P., & Dey, S. (2009). Groundwater quality in the lower Varuna River basin, Varanasi district, Uttar Pradesh, India. Journal of Geological Society of India, 73, 178–192.CrossRefGoogle Scholar
  43. Rawat, M., Ramanathan, A. L., & Subramanian, V. (2009). Quantification and distribution of heavy metals from small-scale industrial areas of Kanpur city, India. Journal of Hazardous Materials, 172(2-3), 1145–1149. doi: 10.1016/j.jhazmat.2009.07.115.CrossRefGoogle Scholar
  44. Ritter, C. J., & Rinefierd, S. M. (1983). Natural background and pollution levels of some heavy metals in soils from the area of Dayton, OH. Environmental Geology, 5, 73–78.CrossRefGoogle Scholar
  45. Roghanian, S., Hosseini, H. M., Savaghebi, G., Halajian, L., Jamei, M., & Etesami, H. (2012). Effects of composted municipal waste and its leachate on some soil chemical properties and corn plant responses. International Journal of Agriculture, 2(6), 801–814.Google Scholar
  46. Sarwar, G., Schmeisky, H., Hussain, N., Muhammad, S., Ibrahim, M., & Safdar, E. (2008). Improvement of soil physical and chemical properties with compost application in rice-wheat cropping system. Pakistan Journal of Botany, 40(1), 275–282.Google Scholar
  47. Senesi, G. S., Baldassarre, G., Senesi, N., & Radina, B. (1999). Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere, 39(2), 343–377.CrossRefGoogle Scholar
  48. Sharholy, M., Ahmad, K., Mahmood, G., & Trivedi, R. C. (2008). Municipal solid waste management in Indian cities – a review. Waste Management, 28, 459–467.CrossRefGoogle Scholar
  49. Shukla, U. K., & Raju, N. J. (2008). Migration of Ganga River and its implication on hydro-geological potential of Varanasi area. U. P. Journal of Earth System Sciences, 117(4), 489–498.CrossRefGoogle Scholar
  50. Singh, R. P., & Agrawal, M. (2010). Variations in heavy metal accumulation, growth and yield of rice plants grown at different sewage sludge amendment rates. Ecotoxicology and Environmental Safety, 73, 632–641.CrossRefGoogle Scholar
  51. Sun, Y. B., Zhou, Q. X., Xie, X. K., & Liu, R. (2010). Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. Journal of Hazardous Materials, 174(1-3), 455–462. doi: 10.1016/j.jhazmat.2009.09.074.CrossRefGoogle Scholar
  52. Tisdale, S. L. (1970). Soil fertility and fertilizers (2nd ed.). New York: The Macmillan.Google Scholar
  53. Tiwari, A. K., & Singh, A. K. (2014). Hydrogeochemical investigation and groundwater quality assessment of Pratapgarh district, Uttar Pradesh. Journal of Geological Society of India, 83(3), 329–343.CrossRefGoogle Scholar
  54. Verma, A. K., & Singh, T. N. (2013). Prediction of water quality from simple field parameters. Environmental Earth Sciences, 69(3), 821–829.CrossRefGoogle Scholar
  55. Wei, B. G., & Yang, L. S. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94, 99–107.CrossRefGoogle Scholar
  56. Wei, B., Jiang, F., Li, X., & Mu, S. (2009). Spatial distribution and contamination assessment of heavy metals in urban road dusts from Urumqi, NW China. Microchemical Journal, 93, 147–152.CrossRefGoogle Scholar
  57. Yang, L., Huang, B., Hua, W., Chen, Y., & Mao, M. (2013). Assessment and source identification of trace metals in the soils of greenhouse vegetable production in eastern China. Ecotoxicology and Environmental Safety, 97, 204–209. doi: 10.1016/j.ecoenv.2013.08.002.CrossRefGoogle Scholar
  58. Zhang, Y., & Bai, S. (2003). Effects of nitrogen forms on nutrient uptake and growth of trees. Ying Yong Sheng Tai Xue Bao, 14(11), 2044–2048.Google Scholar
  59. Zheng, Y. M., Yu, K., Wu, H. T., Huang, Z. C., Chen, H., Wu, X., Tian, Q. Z., Fan, K. K., & Chen, T. B. (2002). Lead concentrations of soils in Beijing urban parks and their pollution assessment. Geographical Research, 21(4), 418–424.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Shubhra Singh
    • 1
  • N. Janardhana Raju
    • 1
  • Sadaf Nazneen
    • 1
  1. 1.School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations