Skip to main content
Log in

Proposed method for controlling turbid particles in solid-phase bioluminescent toxicity measurement

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In the recent half century, numerous methods have been developed to assess ecological toxicity. However, the presence of solid-particle turbidity sometimes causes such tests to end with questionable results. Many researchers focused on controlling this arbitrary turbidity effect when using the Microtox® solid-phase toxicity system, but there is not yet a standard method. In this study, we examined four solid-phase sample test methods recommended in the Microtox® manual, or proposed from the literature, and compared the existing methods with our proposed method (centrifuged basic solid-phase test, c-BSPT). Four existing methods use the following strategies to control turbid particles: complete separation of liquid and solid using 0.45-μm filtration before contacting solid samples and bacteria, natural settlement, moderate separation of large particles using coarser pore size filtration, and exclusion of light loss in the toxicity calculation caused by turbidity after full disturbance of samples. Our proposed method uses moderate centrifugation to separate out the heavier soil particles from the lighter bacteria after direct contact between them. Among the solid-phase methods tested, in which the bacteria and solid particles were in direct contact (i.e., the three existing methods and the newly proposed one, c-BSPT), no single method could be recommended as optimal for samples over a range of turbidity. Instead, a simple screening strategy for selecting a sample-dependent solid-phase test method was suggested, depending on the turbidity of the solid suspension. The results of this study highlight the importance of considering solid particles, and the necessity for optimal selection of test method to reduce errors in the measurement of solid-phase toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashworth, J., Nijenhuis, E., Glowacka, B., Tran, L., & Schenk-Watt, L. (2010). Turbidity and color correction in the Microtox™ bioassay. The Open Environmental Pollution and Toxicology Journal, 2, 1–7.

    Article  CAS  Google Scholar 

  • Azur Environmental. (1998). Microtox® acute toxicity solid-phase test, Carlsbad, CA, USA.

  • Benton, M. J., Malott, M. L., Knight, S. S., Cooper, C. M., & Benson, W. H. (1995). Influence of sediment composition on apparent toxicity in a solid-phase test using bioluminescent bacteria. Environmental Toxicology and Chemistry, 14, 411–414.

    Article  CAS  Google Scholar 

  • Brouwer, H., & Murphy, T. (1995). Volatile sulfides and their toxicity in freshwater sediments. Environmental Toxicology and Chemistry, 14, 203–208.

    Article  CAS  Google Scholar 

  • Brouwer, H., Murphy, T., & McArdle, L. (1990). A sediment-contact bioassay with Photobacterium phosphoreum. Environmental Toxicology and Chemistry, 9, 1353–1358.

    Article  CAS  Google Scholar 

  • Bulich, A. A., Greene, M. W., & Underwood, S. R. (1992). Measurement of soil and sediment toxicity to bioluminescence bacteria when in direct contact for a fixed time period. Water Environmental Federation 65th Annual Conference and Exposition, (pp 53–63).

  • Burga Perez, K. F., Charlatchka, R., & Ferard, J. F. (2013). Assessment of the LuminoTox leachate phase assay as a complement to the LuminoTox solid phase assay: effect of fine particles in natural sediments. Chemosphere, 90(3), 1310–1315.

    Article  CAS  Google Scholar 

  • Burga-Perez, K. F., Charlatchka, R., Sahli, L., & Ferard, J. F. (2012). New methodological improvements in the Microtox® solid phase assay. Chemosphere, 86(1), 105–110.

    Article  CAS  Google Scholar 

  • Campisi, T., Abbondanzi, F., Casado-Martinez, C., del Valls, T. A., Guerra, R., & Iacondini, A. (2005). Effect of sediment turbidity and color on light output measurement for Microtox® Basic Solid-Phase Test. Chemosphere, 60, 9–15.

    Article  CAS  Google Scholar 

  • Dalzell, D. J. B., Alte, S., Aspichueta, E., de la Sota, A., Etxebarria, J., Gutierrez, M., Hoffmann, C. C., Sales, D., Obst, U., & Christofi, N. (2002). A comparison of five rapid direct toxicity assessment methods to determine toxicity of pollutants to activated sludge. Chemosphere, 47, 535–545.

    Article  CAS  Google Scholar 

  • Dombroski, E. C., Gaudet, I. D., & Florence, L. Z. (1996). A comparison of techniques used to extract solid samples prior to acute toxicity analysis using the Microtox test. Environmental Toxicology and Water Quality, 11, 121–128.

    Article  CAS  Google Scholar 

  • Harkey, G. A., & Young, T. M. (2000). Effect of soil contaminant extraction method in determining toxicity using the Microtox® assay. Environmental Toxicology and Chemistry, 19, 276–282.

    Article  CAS  Google Scholar 

  • Indiana Department of Transportation Office of Materials Management: recycled foundry sand toxicity test ITM No.215-08 T. (2008).

  • Jho, E. H., Im, J., Yang Kim, Y.-J., & Nam, K. (2015). Changes in soil toxicity by phosphate-aided soil washing: effect of soil characteristics, chemical forms of arsenic, and cations in washing solutions. Chemosphere, 119, 1399–1405.

    Article  CAS  Google Scholar 

  • Jung, H. B., Park, J. G., Moon, S. H., Ryu, T. K., Kim, S. J., Bae, C. H., & Hwang, I. Y. (2001). A study for testing conditions of Microtox® toxicity test to the quality of sediment in domestic rivers. Korean Journal of Environmental Toxicology, 16, 143–151.

    Google Scholar 

  • Keddy, C. J., Greene, J. C., & Bonnell, M. A. (1995). Review of whole-organism bioassays: soil, freshwater sediment, and freshwater assessment in Canada. Ecotoxicology and Environmental Safety, 30, 221–251.

    Article  CAS  Google Scholar 

  • Kovats, N., Refaey, M., Varanka, B., Reich, K., Ferincz, A., & Acs, A. (2012). Comparison of conventional and Vibrio fischeri bioassays for the assessment of municipal wastewater toxicity. Environmental Engineering and Management Journal, 11(11), 2073–2076.

    CAS  Google Scholar 

  • Lappalainen, J., Juvonen, R., Vaajasaari, K., & Karp, M. (1999). A new flash method for measuring the toxicity of solid and colored samples. Chemosphere, 38, 1069–1083.

    Article  CAS  Google Scholar 

  • Lappalainen, J., Juvonen, R., Nurmi, J., & Karp, M. (2001). Automated color correction method for Vibrio fischeri toxicity test. Comparison of standard and kinetic assays. Chemosphere, 45, 635–641.

    Article  CAS  Google Scholar 

  • Loureiro, S., Ferreira, A. L. G., Soares, A. M. V. M., & Nogueira, A. J. A. (2005). Evaluation of the toxicity of two soils from Jales Mine (Portugal) using aquatic bioassays. Chemosphere, 61, 168–177.

    Article  CAS  Google Scholar 

  • Ma, X. Y., Wang, X. C., Ngo, H. H., Guo, W., Wu, M. N., & Wang, N. (2014). Bioassay based luminescent bacteria: interferences, improvements, and applications. Science of the Total Environment, 15, 1–11.

    Article  Google Scholar 

  • Onorati, F., Pellegrini, D., & Ausili, A. (1998). Sediment toxicity assessment with Photobacterium phosphoreum: a preliminary evaluation of natural matrix effect. Fresenius Environmental Bulletin, 7, 596–604.

    Google Scholar 

  • Park, K., & Hee, S. Q. (2001). Effect of dust on the viability of Vibrio fischeri in the Microtox test. Ecotoxicology and Environmental Safety, 50(3), 189–195.

    Article  CAS  Google Scholar 

  • Parvez, S., Venkataraman, C., & Mukherji, S. (2006). A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environment International, 32, 265–268.

    Article  CAS  Google Scholar 

  • Ringwood, A. H., DeLorenzo, M. E., Ross, P. E., & Holland, A. F. (1997). Interpretation of Microtox solid-phase toxicity tests: the effects of sediment composition. Environmental Toxicology and Chemistry, 16, 1135–1140.

    Article  CAS  Google Scholar 

  • Romkens, P. F. A. M., Bouwman, L. A., & Boon, G. T. (1999). Effect of plant growth on copper solubility and speciation in soil solution samples. Environmental Pollution, 106, 315–321.

    Article  CAS  Google Scholar 

  • Serafim, A., Company, R., Lopes, B., Pereira, C., Cravo, A., Fonseca, V. F., França, S., Bebianno, M. J., & Cabral, H. N. (2013). Evaluation of sediment toxicity in different Portuguese estuaries: ecological impact of metals and polycyclic aromatic hydrocarbons. Estuarine, Coastal and Shelf Science, 130, 30–41.

    Article  CAS  Google Scholar 

  • Svenson, A., Cardoso, A., Thuren, A., Kaj, L., & Dave, G. (1994). Microtox toxicity in sediment: modified method for the direct contact test with luminescent bacteria. IVL report for Sweden Environmental Research Institute.

  • Tiensing, T., Preston, S., Strachan, N., & Paton, G. I. (2001). Soil solution extraction techniques for microbial ecotoxicity testing: a comparative evaluation. Journal of Environmental Monitoring, 3, 91–96.

    Article  CAS  Google Scholar 

  • Tung, K. K., Scheibner, G., Miller, T., & Bulich, A. A. (1990). A new method for testing soil and sediment samples. Presented at the SETAC Conference, November, 1990.

  • Vanhala, P. T., & Ahtiainen, J. H. (1994). Soil respiration, ATP content, and photobacterium toxicity test as indicators of metal pollution in soil. Environmental Toxic Water, 9, 115–121.

    Article  CAS  Google Scholar 

  • Volpi-Ghirardini, A., Birkemeyer, T., Arrizi-Novelli, A., Delaney, E., & Ghetti, P. F. (1999). An integrated approach to sediment quality assessment: the Venetian lagoon as a case study. Aquatic Ecosystem Health & Management, 2, 435–447.

    Article  Google Scholar 

  • Volpi-Ghirardini, A., Girardini, M., Marchetto, D., & Pantani, C. (2009). Microtox® solid phase test: effect of diluent used in toxicity test. Ecotoxicology and Environmental Safety, 72, 851–861.

    Article  CAS  Google Scholar 

  • Xiaoyan, Y. M., Xiaochang, C. W., Ngo, H. H., Wenshan, G., Maoni, N. W., & Na, W. (2014). Bioassay based luminescent bacteria: interferences, improvements, and applications. Science of the Total Environment, 468(469), 1–11.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM), funded by the Ministry of Science, ICT, and Future Planning of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Soo Han.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

The general procedure of Microtox® bioassay, the test results of centrifugation effect on bacterial activity, an example of irregularity induced in the SPT, and the detail of “density theory” proposed to explain possible errors in the c-BSPT are provided in the supplemental material. This material is available online. (DOCX 193 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeo, SK., Park, JB., Ahn, JS. et al. Proposed method for controlling turbid particles in solid-phase bioluminescent toxicity measurement. Environ Monit Assess 187, 347 (2015). https://doi.org/10.1007/s10661-015-4559-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4559-6

Keywords

Navigation