Skip to main content
Log in

The influence of water quality variables on cyanobacterial blooms and phytoplankton community composition in a shallow temperate lake

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Cyanobacterial blooms and their detrimental effects on water quality have become a worldwide problem. Vancouver Lake, a tidally influenced shallow temperate freshwater lake in Washington state, U.S.A., exhibits annual summer cyanobacterial blooms that are of concern to local resource managers. Our objectives were to describe changes in phytoplankton community composition in Vancouver Lake over seasonal, annual, and interannual time scales, and to identify strong water quality predictors of phytoplankton community structure, with an emphasis on cyanobacterial blooms, from 2007 through 2010. Cluster analysis, indicator species analysis, and non-metric multidimensional scaling were used to identify significantly different phytoplankton community groupings and to determine which environmental factors influenced community changes. From 2007 through 2009, depletion of NO3–N followed by elevated PO4–P concentration was associated with increased biomass and duration of each cyanobacterial bloom. Time-lag analysis suggested that NO3–N availability contributed to interannual changes within the summer phytoplankton community. Specifically, in summer 2010, a distinct cyanobacteria community was not present, potentially due to increased NO3–N and decreased PO4–P and NH4–N availability. Our study provides a comprehensive assessment of species-level responses to water quality variables in a shallow non-stratifying temperate lake, contributes to a better understanding of phytoplankton dynamics, and may aid in predicting and managing cyanobacterial blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adámek, Z., & Maršálek, B. (2013). Bioturbation of sediments by benthic macroinvertebrates and fish and its implication for pond ecosystems: a review. Aquaculture International, 21, 1–17.

    Article  Google Scholar 

  • American Public Health Association (APHA), American Water Works Association, Water Environment Federation. (2012). Standard methods for the examination of water and wastewater (22nd ed.). Washington, D.C.: American Public Health Association.

    Google Scholar 

  • Anderson, D. M., Glibert, P. M., & Burkholder, J. M. (2002). Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries and Coasts, 25, 704–726.

    Article  Google Scholar 

  • Arhonditsis, G., Brett, M. T., & Frodge, J. (2003). Environmental control and limnological impacts of a large recurrent spring bloom in Lake Washington, USA. Environmental Management, 31, 603–618.

    Article  CAS  Google Scholar 

  • Axler, R. P., Redfield, G. W., & Goldman, C. R. (1981). The importance of regenerated nitrogen to phytoplankton productivity to phytoplankton productivity in a subalpine lake. Ecology, 62, 345–354.

    Article  Google Scholar 

  • Bennion, H., & Smith, M. A. (2000). Variability in the water chemistry of shallow ponds in southeast England, with special reference to the seasonality of nutrients and implications for modelling trophic status. Hydrobiologia, 436, 145–158.

    Article  CAS  Google Scholar 

  • Bhagat, S. K., & Orsborn, J. F. (1971). Summary report on water quantity and quality studies of Vancouver Lake, Washington. Pullman. Washington: Washington State University. http://aquaticcommons.org/1457/.

    Google Scholar 

  • Blomqvist, P., Petterson, A., & Hyenstrand, P. (1994). Ammonium-nitrogen: a key regulatory factor causing dominance of non-nitrogen-fixing cyanobacteria in aquatic systems. Archiv für Hydrobiologie, 132, 141–164.

    CAS  Google Scholar 

  • Bollens, S., & Rollwagen-Bollens, G. (2009). Biological assessment of the plankton in Vancouver Lake, WA. Washington State University Vancouver. http://sites.cityofvancouver.us/vancouverlake/MapsMaterials/WSUYr1Report_Text.pdf.

  • Boyer, J., Rollwagen-Bollens, G., & Bollens, S. M. (2011). Microzooplankton grazing before, during and after a cyanobacterial bloom in Vancouver Lake, Washington, USA. Aquatic Microbial Ecology, 64, 163–174.

    Article  Google Scholar 

  • Caraco, N. F., Cole, J. J., & Likens, G. E. (1993). Sulfate control of phosphorus availability in lakes. Hydrobiologia, 253, 275–280.

    Article  CAS  Google Scholar 

  • Carmichael, W. W. (1992). Cyanobacteria secondary metabolites—the cyanotoxins. Journal of Applied Bacteriology, 72, 445–459.

    Article  CAS  Google Scholar 

  • Chorus, I., Falconer, I. R., Salas, H. J., & Bartram, J. (2000). Health risks caused by freshwater cyanobacteria in recreational waters. Journal of Toxicology and Environmental Health, Part B: Critical Reviews, 3, 323–347.

    Article  CAS  Google Scholar 

  • Clarke, K. (1993). Nonparametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117–143.

    Article  Google Scholar 

  • Cloern, J. E. (1991). Tidal stirring and phytoplankton bloom dynamics in an estuary. Journal of Marine Research, 49, 203–221.

    Article  Google Scholar 

  • Cook, P. L. M., Holland, D. P., & Longmore, A. R. (2010). Effect of a flood event on the dynamics of phytoplankton and biogeochemistry in a large temperate Australian lagoon. Limnology and Oceanography, 55, 1123.

    Article  CAS  Google Scholar 

  • Cottingham, K. L., & Carpenter, S. R. (1998). Population, community, and ecosystem variates as ecological indicators: phytoplankton responses to whole-lake enrichment. Ecological Applications, 8, 508–530.

    Article  Google Scholar 

  • Davelaar, D. (1993). Ecological significance of bacterial polyphosphate metabolism in sediments. Hydrobiologia, 253, 179–192.

    Article  CAS  Google Scholar 

  • Davis, T. W., Harke, M. J., Marcoval, M. A., Goleski, J., Orano-Dawson, C., Berry, D. L., et al. (2010). Effects of nitrogenous compounds and phosphorus on the growth of toxic and non-toxic strains of Microcystis during cyanobacterial blooms. Aquatic Microbial Ecology, 61, 149–162.

    Article  Google Scholar 

  • De Nobel, W. T., Staats, N., & Mur, L. R. (1995). Competition between nitrogen-fixing cyanobacteria during phosphorus-limited growth. Water Science and Technology, 32, 99–101.

    Google Scholar 

  • De Nobel, W. T., Huisman, J., Snoep, J. L., & Mur, L. R. (1997). Competition for phosphorus between the nitrogen-fixing cyanobacteria Anabaena and Aphanizomenon. FEMS Microbiology Ecology, 24, 259–267.

    Article  Google Scholar 

  • De Nobel, W. T., Matthijs, H. C. P., von Elert, E., & Mur, L. R. (1998). Comparison of the light-limited growth of the nitrogen-fixing cyanobacteria Anabaena and Aphanizomenon. New Phytologist, 138, 579–587.

    Article  Google Scholar 

  • De Senerpont Domis, L. N., Elser, J. J., Gsell, A. S., Huszar, V. L. M., Ibelings, B. W., Jeppesen, E., et al. (2013). Plankton dynamics under different climatic conditions in space and time. Freshwater Biology, 58, 463–482.

    Article  Google Scholar 

  • Dodds, W. K., & Priscu, J. C. (1990). A comparison of methods for assessment of nutrient deficiency of phytoplankton in a large oligotrophic lake. Canadian Journal of Fisheries and Aquatic Sciences, 47, 2328–2338.

    Article  Google Scholar 

  • Dufrene, M., & Legendre, P. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67, 345–366.

    Google Scholar 

  • Edmondson, W. T. (1994). Sixty years of Lake Washington: a curriculum vitae. Lake and Reservoir Management, 10, 75–84.

    Article  Google Scholar 

  • Elliott, J. A. (2012). Predicting the impact of changing nutrient load and temperature on the phytoplankton of England’s largest lake, Windermere. Freshwater Biology, 57, 400–413.

    Article  CAS  Google Scholar 

  • Farnsworth-Lee, L. A., & Baker, L. A. (2000). Conceptual model of aquatic plant decay and ammonia toxicity for shallow lakes. Journal of Environmental Engineering, 126, 199–207.

    Article  CAS  Google Scholar 

  • Ferber, L. R., Levine, S. N., Lini, A., & Livingston, G. P. (2004). Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen? Freshwater Biology, 49, 690–708.

    Article  CAS  Google Scholar 

  • Foreman, J. R., Marshall, C. A., & Scheibley, R. W. (2014). Discharge, water temperature, and selected meterological data for Vancouver Lake, Washington, water years 2011–13. U.S. Geological Survey Data Series 849, 52 p., doi:10.3133/ds849.

  • Fukuhara, H., & Sakamoto, M. (1987). Enhancement of inorganic nitrogen and phosphate release from lake sediment by tubificid worms and chironomid larvae. Oikos, 48, 312–320.

    Article  Google Scholar 

  • Gachter, R., Meyer, J. S., & Mares, A. (1988). Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnology and Oceanography, 33, 1542–1558.

    Article  CAS  Google Scholar 

  • Glibert, P. M., Kelly, V., Alexander, J., Codispoti, L. A., Boicourt, W. C., Trice, T. M., et al. (2008). In situ nutrient monitoring: a tool for capturing nutrient variability and the antecedent conditions that support algal blooms. Harmful Algae, 8, 175–181.

    Article  CAS  Google Scholar 

  • Guo, L. (2007). Doing battle with the green monster of Taihu Lake. Science, 317, 1166.

    Article  CAS  Google Scholar 

  • Hambright, K. D., Hairston, N. G., Schaffner, W. R., & Howarth, R. W. (2007). Grazer control of nitrogen fixation: synergisms in the feeding ecology of two freshwater crustaceans. Archiv für Hydrobiologie, 170, 89–101.

    Article  CAS  Google Scholar 

  • Hampton, S. E., Izmes’eva, L. R., Moore, M. V., Katz, S. L., Dennis, B., & Silow, E. A. (2008). Sixty years of environmental change in the world’s largest freshwater lake—Lake Baikal, Siberia. Global Change Biology, 14, 1947–1958.

    Article  Google Scholar 

  • Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C., et al. (2008). Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae, 8, 3–13.

    Article  CAS  Google Scholar 

  • Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35, 403–424.

    Article  Google Scholar 

  • Hoagland, P., Anderson, D. M., Kaoru, Y., & White, A. W. (2002). The economic effects of harmful algal blooms in the United States: estimates, assessment issues, and information needs. Estuaries and Coasts, 25, 819–837.

    Article  Google Scholar 

  • Hsieh, C. H., Ishikawa, K., Sakai, Y., Ishikawa, T., Ichise, S., Yamamoto, Y., et al. (2010). Phytoplankton community reorganization driven by eutrophication and warming in Lake Biwa. Aquatic Sciences-Research Across Boundaries, 72, 467–483.

    Article  CAS  Google Scholar 

  • Hudnell, H. K. (2010). The state of U.S. freshwater harmful algal blooms assessments, policy and legislation. Toxicon, 55, 1024–1034.

    Article  CAS  Google Scholar 

  • Hupfer, M., & Lewandowski, J. (2008). Oxygen controls the phosphorus release from lake sediments—a long-lasting paradigm in limnology. International Review of Hydrobiology, 93, 415–432.

    Article  CAS  Google Scholar 

  • Jacoby, J. M., & Kann, J. (2007). The occurence and response to toxic cyanobacteria in the Pacific Northwest, North America. Lake and Reservoir Management, 23, 123–143.

    Article  Google Scholar 

  • Kokocinski, M., & Soininen, J. (2008). Temporal variation in phytoplankton in two lakes with contrasting disturbance regimes. Archiv für Hydrobiologie, 171, 39–48.

    Article  Google Scholar 

  • Koreivienė, J., Anne, O., Kasperovičienė, J., & Burškytė, V. (2014). Cyanotoxin management and human health risk mitigation in recreational waters. Environmental Monitoring and Assessment, 186, 4443–4459.

    Article  Google Scholar 

  • Koseff, J. R., Holen, J. K., Monismith, S. G., & Cloern, J. E. (1993). Coupled effects of vertical mixing and benthic grazing on phytoplankton populations in shallow, turbid estuaries. Journal of Marine Research, 51, 843–868.

    Article  Google Scholar 

  • Kosten, S., Huszar, V. L. M., Bécares, E., Costa, L. S., Donk, E., Hansson, L. A., et al. (2011). Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology, 18, 118–126.

    Article  Google Scholar 

  • Krivtsov, V., & Sigee, D. C. (2005). Importance of biological and abiotic factors for geochemical cycling in a freshwater eutrophic lake. Biogeochemistry, 74, 205–230.

    Article  CAS  Google Scholar 

  • Kruk, C., Huszar, V. L. M., Peeters, E. T. H. M., Bonilla, S., Costa, L., Lürling, M., et al. (2010). A morphological classification capturing functional variation in phytoplankton. Freshwater Biology, 55, 614–627.

    Article  Google Scholar 

  • Landers, D. H. (1982). Effects of naturally senescing aquatic macrophytes on nutrient chemistry and chlorophyll a of surrounding waters. Limnology and Oceanography, 27, 428–439.

    Article  CAS  Google Scholar 

  • Lee, T. A., Rollwagen-Bollens, G., Bollens, S. M., & Faber-Hammond, J. J. (2015). Environmental influence on cyanobacteria abundance and microcystin toxin production in a shallow temperate lake. Ecotoxicology and Environmental Safety, 114, 318–325.

    Article  CAS  Google Scholar 

  • Lehman, J. T. (2011). Nuisance cyanobacteria in an urbanized impoundment: interacting internal phosphorus loading, nitrogen metabolism, and polymixis. Hydrobiologia, 661, 277–287.

    Article  CAS  Google Scholar 

  • Lund, J. W. G., Kipling, C., & Le Cren, E. D. (1958). The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia, 11, 143–170.

    Article  Google Scholar 

  • Makarewicz, J. C., Lewis, T. W., & Bertram, P. (1999). Phytoplankton composition and biomass in the offshore waters of Lake Erie: pre- and post-Dreissna introduction (1983–1993). Journal of Great Lakes Research, 25, 135–148.

    Article  Google Scholar 

  • McCarthy, M. J., James, R. T., Chen, Y., East, T. L., & Gardner, W. S. (2009). Nutrient ratios and phytoplankton community structure in the large, shallow, eutrophic, subtropical Lakes Okeechobee (Florida, USA) and Taihu (China). Limnology, 10, 215–227.

    Article  CAS  Google Scholar 

  • McCune, B., & Grace, J. B. (2002). Analysis of Ecological Communities. MjM Software Design.

  • Menden-Deuer, S., & Lessard, E. J. (2000). Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography, 45, 569–579.

    Article  CAS  Google Scholar 

  • Mieleitner, J., Borsuk, M., Bürgi, H.-R., & Reichert, P. (2008). Identifying functional groups of phytoplankton using data from three lakes of different trophic state. Aquatic Sciences, 70, 30–46.

    Article  Google Scholar 

  • Mielke, P., Berry, K., & Brier, G. (1981). Application of multi-response permutation procedures for examining seasonal-changes in monthly mean sea-level pressure patterns. Monthly Weather Review, 109, 120–126.

    Article  Google Scholar 

  • Mortimer, C. H. (1942). The exchange of dissolved substances between mud and water in lakes. Journal of Ecology, 30, 147–201.

    Article  CAS  Google Scholar 

  • Neale, P. J., Talling, J. F., Heaney, S. I., Reynolds, C. S., & Lund, J. W. G. (1991). Long time series from the English Lake District: irradiance-dependent phytoplankton dynamics during the spring maximum. Limnology and Oceanography, 36, 751–760.

    Article  CAS  Google Scholar 

  • Paerl, H. (2008). Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater–marine continuum. In H. K. Hudnell (Ed.), Cyanobacterial harmful algal blooms: state of the science and research needs (pp. 217–237). New York: Springer.

    Chapter  Google Scholar 

  • Paerl, H. W., & Huisman, J. (2009). Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports, 1, 27–37.

    Article  CAS  Google Scholar 

  • Palmer-Felgate, E. J., Mortimer, R. J. G., Krom, M. D., Jarvie, H. P., Williams, R. J., Spraggs, R. E., et al. (2011). Internal loading of phosphorus in a sedimentation pond of a treatment wetland: effect of a phytoplankton crash. Science of the Total Environment, 409, 2222–2232.

    Article  CAS  Google Scholar 

  • Prescott, G., Bamrick, J., Cawley, E., & Jaques, W. (1978). How to know the freshwater algae (3rd ed.). McGraw-Hill Science/Engineering/Math.

  • Rantajarvi, E., Gran, V., Hallfors, S., & Olsonen, R. (1998). Effects of environmental factors on the phytoplankton community in the Gulf of Findland—unattended high frequency measurements and multivariate analyses. Hydrobiologia, 363, 127–139.

    Article  Google Scholar 

  • Reynolds, C. S. (2002). Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 24, 417–428.

    Article  Google Scholar 

  • Reynolds, C. S. (2006). Ecology of phytoplankton. New York: Cambridge University Press. http://site.ebrary.com/id/10129230.

    Book  Google Scholar 

  • Reynolds, C., Dokulil, M., & Padisák, J. (2000). Understanding the assembly of phytoplankton in relation to the trophic spectrum: where are we now? Hydrobiologia, 424, 147–152.

    Article  Google Scholar 

  • Riddolls, A. (1985). Aspects of nitrogen fixation in Lough Neagh. I. Acetylene reduction and frequency of Aphanizomenon flos-aquae heterocysts. Freshwater Biology, 15, 289–297.

    Article  CAS  Google Scholar 

  • Rollwagen-Bollens, G., Bollens, S. M., Gonzalez, A., Zimmerman, J., Lee, T., & Emerson, J. (2013). Feeding dynamics of the copepod Diacyclops thomasi before, during and following filamentous cyanobacteria blooms in a large, shallow temperate lake. Hydrobiologia, 705, 101–118.

    Article  CAS  Google Scholar 

  • Rothenberger, M. B., Burkholder, J. A. M., & Wentworth, T. R. (2009). Use of long-term data and multivariate ordination techniques to identify environmental factors governing estuarine phytoplankton species dynamics. Limnology and Oceanography, 54, 2107.

    Article  Google Scholar 

  • Schindler, D. W. (1987). Detecting ecosystem responses to anthropogenic stress. Canadian Journal of Fisheries and Aquatic Sciences, 44(Suppl. 1), 6–25.

    Article  CAS  Google Scholar 

  • Sellner, K. G., Doucette, G. J., & Kirkpatrick, G. J. (2003). Harmful algal blooms: causes, impacts and detection. Journal of Industrial Microbiology & Biotechnology, 30, 383–406.

    Article  CAS  Google Scholar 

  • Sommer, U., Gliwicz, Z. M., Lampert, W., & Duncan, A. (1986). The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie, 106, 453–471.

    Google Scholar 

  • Søndergaard, M., Jensen, J. P., & Jeppesen, E. (2003). Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 506, 135–145.

    Article  Google Scholar 

  • Spears, B. M., Carvalho, L., Perkins, R., & Paterson, D. M. (2008). Effects of light on sediment nutrient flux and water column nutrient stoichiometry in a shallow lake. Water Research, 42, 977–986.

    Article  CAS  Google Scholar 

  • Taranu, Z. E., Zurawell, R. W., Pick, F., & Gregory-Eaves, I. (2012). Predicting cyanobacterial dynamics in the face of global change: the importance of scale and environmental context. Global Change Biology, 18, 3477–3490.

    Article  Google Scholar 

  • Thackeray, S. J., Jones, I. D., & Maberly, S. C. (2008). Long-term change in the phenology of spring phytoplankton: species-specific responses to nutrient enrichment and climatic change. Journal of Ecology, 96, 523–535.

    Article  Google Scholar 

  • Thompson, J. K., Koseff, J. R., Monismith, S. G., & Lucas, L. V. (2008). Shallow water processes govern system-wide phytoplankton dynamics: a field study. Journal of Marine Systems, 78, 153–166.

    Article  Google Scholar 

  • Tsugeki, N. K., Urabe, J., Hayami, Y., Kuwae, M., & Nakanishi, M. (2010). Phytoplankton dynamics in Lake Biwa during the 20th century: complex responses to climate variation and changes in nutrient status. Journal of Paleolimnology, 44, 69–83.

    Article  Google Scholar 

  • Turpin, D. H., Layzell, D. B., & Elrifi, I. R. (1985). Modeling the C economy of Anabaena flos-aquae: estimates of establishment, maintenance, and active costs associated with growth on NH3, NO3 , and N2. Plant Physiology, 78, 746–752.

    Article  CAS  Google Scholar 

  • Wehr, J. D., & Sheath, R. G. (2002). Freshwater Algae of North America: Ecology and Classification. Academic Press.

Download references

Acknowledgments

We thank M. McDonald, A. Gonzalez, and J. Zimmerman for help with sampling and data collection, and the Vancouver Lake Sailing Club for lake access. This research was partially supported by grant no. 06HQGR0126 from the United States Geological Survey (USGS) to G.R.B. and S.M.B., through the State of Washington Water Research Center. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the USGS. Additional support came from the Vancouver Lake Watershed Partnership and NSF ULTRA-EX grant 09–48983 to S.M.B. and G.R.B. The lead author also received additional funding from the Robert Lane Fellowship in Environmental Science through Washington State University, and a GK-12 Fellowship from the National Science Foundation STEM Fellows in K-12 Education grant (DGE 07–42561) awarded to G.R.B. and S.M.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tammy A. Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(PDF 330 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T.A., Rollwagen-Bollens, G. & Bollens, S.M. The influence of water quality variables on cyanobacterial blooms and phytoplankton community composition in a shallow temperate lake. Environ Monit Assess 187, 315 (2015). https://doi.org/10.1007/s10661-015-4550-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4550-2

Keywords

Navigation