Skip to main content

Advertisement

Log in

Assessment of ichthyotoxicity and anthropogenic contamination in the surface waters of Kenting National Park, Taiwan

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Millions of tourists visit Kenting National Park (KNP) in southern Taiwan every year, causing great amount of sewage discharges in this area. This study aimed to assess the impact of sewage on KNP surface waters using zebrafish embryo-larval bioassays combined with chemical analyses of pharmaceuticals and personal care products (PPCPs). Surface water samples were collected monthly from May to October in 2010. During the monthly bioassays, zebrafish embryos were exposed to the water samples for 144 h. Hatchability, embryonic heart rate, larval survival rate, and deformities were recorded. Larval swimming behavior was also digitally quantified at the end of exposure. Significant decreases in hatchability and larval survival rate were observed at all sites. Both hatchability and larval survival rate were negatively correlated with nitrite and ammonia concentrations in the water. The field water had little effect on embryonic heart rate and morphology. However, lower swimming speeds and activity levels were observed in the larvae, suggesting neurobehavioral toxicity of the surface waters. The general detection frequency of the 28 target PPCPs was 75 %. High levels of some PPCPs, particularly caffeine, N,N-diethyl-3-methylbenzamide (DEET), and nonylphenol, were measured in the water samples. Our results show that surface waters in KNP have been strongly impacted by human activities, resulting in lethal and behavioral toxicities in developing fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abou-Donia, M. B., Dechkovskaia, A. M., Goldstein, L. B., Abdel-Rahman, A., Bullman, S. L., & Khan, W. A. (2004). Co-exposure to pyridostigmine bromide, DEET, and/or permethrin causes sensorimotor deficit and alterations in brain acetylcholinesterase activity. Pharmacology Biochemistry and Behavior, 77(2), 253–262.

    Article  CAS  Google Scholar 

  • Abou-Donia, M. B., Wilmarth, K. R., Abdel-Rahman, A. A., Jensen, K. F., Oehme, F. W., & Kurt, T. L. (1996). Increased neurotoxicity following concurrent exposure to pyridostigmine bromide, DEET, and chlorpyrifos. Toxicological Sciences, 34(2), 201–222.

    Article  CAS  Google Scholar 

  • Adelman, I. R., Kusilek, L. I., Koehle, J., & Hess, J. (2009). Acute and chronic toxicity of ammonia, nitrite, and nitrate to the endangered Topeka shiner (Notropis topeka) and fathead minnow (Pimephales promelas). Environmental Toxicology and Chemistry, 28(10), 2216–2223.

    Article  CAS  Google Scholar 

  • ATSDR. (2004). Toxicological profile for ammonia. Atlanta: Agency of Toxic Substances and Disease Registry.

    Google Scholar 

  • Belz, R. G., Cedergreen, N., & Sorensen, H. (2008). Hormesis in mixtures—can it be predicted? Science of the Total Environment, 404(1), 77–87.

    Article  CAS  Google Scholar 

  • Brausch, J. M., & Rand, G. M. (2011). A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere, 82(11), 1518–1532.

    Article  CAS  Google Scholar 

  • Capiotti, K. M., Menezes, F. P., Nazario, L. R., Pohlmann, J. B., de Oliveira, G. M. T., Fazenda, L., et al. (2011). Early exposure to caffeine affects gene expression of adenosine receptors, DARPP-32 and BDNF without affecting sensibility and morphology of developing zebrafish (Danio rerio). Neurotoxicology and Teratology, 33(6), 680–685.

    Article  CAS  Google Scholar 

  • Chandrasekar, G., Arner, A., Kitambi, S. S., Dahlman-Wright, K., & Lendahl, M. A. (2011). Developmental toxicity of the environmental pollutant 4-nonylphenol in zebrafish. Neurotoxicology and Teratology, 33(6), 752–764.

    Article  CAS  Google Scholar 

  • Chapman, P. M. (2000). Whole effluent toxicity testing—usefulness, level of protection, and risk assessment. Environmental Toxicology and Chemistry, 19(1), 3–13.

    CAS  Google Scholar 

  • Chen, T.-H., Lin, C.-C., & Meng, P.-J. (2014). Zinc oxide nanoparticles alter hatching and larval locomotor activity in zebrafish (Danio rerio). Journal of Hazardous Materials, 277, 134–140.

    Article  CAS  Google Scholar 

  • Chen, T.-H., Lin, C.-Y., & Tseng, M.-C. (2011a). Behavioral effects of titanium dioxide nanoparticles on larval zebrafish (Danio rerio). Marine Pollution Bulletin, 63(5-12), 303–308.

    Article  CAS  Google Scholar 

  • Chen, T.-H., Wang, Y.-H., & Wu, Y.-H. (2011b). Developmental exposures to ethanol or dimethylsulfoxide at low concentrations alter locomotor activity in larval zebrafish: implications for behavioral toxicity bioassays. Aquatic Toxicology, 102(3-4), 162–166.

    Article  CAS  Google Scholar 

  • Chen, Y.-H., Huang, Y.-H., Wen, C.-C., Wang, Y.-H., Chen, W.-L., Chen, L.-C., et al. (2008). Movement disorder and neuromuscular change in zebrafish embryos after exposure to caffeine. Neurotoxicology and Teratology, 30(5), 440–447.

    Article  CAS  Google Scholar 

  • Chen, Z., Pavelic, P., Dillon, P., & Naidu, R. (2002). Determination of caffeine as a tracer of sewage effluent in natural waters by on-line solid-phase extraction and liquid chromatography with diode-array detection. Water Research, 36(19), 4830–4838.

    Article  CAS  Google Scholar 

  • Costanzo, S. D., Watkinson, A. J., Murby, E. J., Kolpin, D. W., & Sandstrom, M. W. (2007). Is there a risk associated with the insect repellent DEET (N, N-diethyl-m-toluamide) commonly found in aquatic environments? Science of the Total Environment, 384(1–3), 214–220.

    Article  CAS  Google Scholar 

  • de Esch, C., Slieker, R., Wolterbeek, A., Woutersen, R., & de Groot, D. (2012). Zebrafish as potential model for developmental neurotoxicity testing: a mini review. Neurotoxicology and Teratology, 34(6), 545–553.

    Article  Google Scholar 

  • Fraysse, B., Mons, R., & Garric, J. (2006). Development of a zebrafish 4-day embryo-larval bioassay to assess toxicity of chemicals. Ecotoxicology and Environmental Safety, 63(2), 253–267.

    Article  CAS  Google Scholar 

  • García-Cambero, J. P., Catalá, M., & Valcárcel, Y. (2012). River waters induced neurotoxicity in an embryo–larval zebrafish model. Ecotoxicology and Environmental Safety, 84, 84–91.

    Article  Google Scholar 

  • Glassmeyer, S. T., Furlong, E. T., Kolpin, D. W., Cahill, J. D., Zaugg, S. D., Werner, S. L., et al. (2005). Transport of chemical and microbial compounds from known wastewater discharges: potential for use as indicators of human fecal contamination. Environmental Science & Technology, 39(14), 5157–5169.

    Article  CAS  Google Scholar 

  • Irons, T. D., MacPhail, R. C., Hunter, D. L., & Padilla, S. (2010). Acute neuroactive drug exposures alter locomotor activity in larval zebrafish. Neurotoxicology and Teratology, 32(1), 84–90.

    Article  CAS  Google Scholar 

  • Jiang, J.-Q., Zhou, Z., Patibandla, S., & Shu, X. (2013). Pharmaceutical removal from wastewater by ferrate(VI) and preliminary effluent toxicity assessments by the zebrafish embryo model. Microchemical Journal, 110, 239–245.

    Article  CAS  Google Scholar 

  • Jie, X., JianMei, L., Zheng, F., Lei, G., Biao, Z., & Jie, Y. (2013). Neurotoxic effects of nonylphenol: a review. Wiener Klinische Wochenschrift, 125(3-4), 61–70.

    Article  CAS  Google Scholar 

  • Kane, A. S., Salierno, J. D., Gipson, G. T., Molteno, T. C., & Hunter, C. (2004). A video-based movement analysis system to quantify behavioral stress responses of fish. Water Research, 38(18), 3993–4001.

    Article  CAS  Google Scholar 

  • Kienle, C., Köhler, H.-R., & Gerhardt, A. (2009). Behavioural and developmental toxicity of chlorpyrifos and nickel chloride to zebrafish (Danio rerio) embryos and larvae. Ecotoxicology and Environmental Safety, 72(6), 1740–1747.

    Article  CAS  Google Scholar 

  • Lammer, E., Carr, G. J., Wendler, K., Rawlings, J. M., Belanger, S. E., & Braunbeck, T. (2009). Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 149(2), 196–209.

    CAS  Google Scholar 

  • Lawrence, C. (2007). The husbandry of zebrafish (Danio rerio): a review. Aquaculture, 269(1-4), 1–20.

    Article  Google Scholar 

  • Lin, A. Y.-C., Yu, T.-H., & Lin, C.-F. (2008). Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan. Chemosphere, 74(1), 131–141.

    Article  CAS  Google Scholar 

  • Lin, H.-J., Wu, C.-Y., Kao, S.-J., Kao, W.-Y., & Meng, P.-J. (2007). Mapping anthropogenic nitrogen through point sources in coral reefs using δ15N in macroalgae. Marine Ecology Progress Series, 335, 95–109.

    Article  CAS  Google Scholar 

  • Little, E. E., & Finger, S. E. (1990). Swimming behavior as an indicator of sublethal toxicity in fish. Environmental Toxicology and Chemistry, 9(1), 13–19.

    Article  CAS  Google Scholar 

  • Liu, P.-J., Meng, P.-J., Liu, L.-L., Wang, J.-T., & Leu, M.-Y. (2012). Impacts of human activities on coral reef ecosystems of southern Taiwan: a long-term study. Marine Pollution Bulletin, 64(6), 1129–1135.

    Article  CAS  Google Scholar 

  • Meng, P.-J., Lee, H.-J., Wang, J.-T., Chen, C.-C., Lin, H.-J., Tew, K. S., et al. (2008). A long-term survey on anthropogenic impacts to the water quality of coral reefs, southern Taiwan. Environmental Pollution, 156(1), 67–75.

    Article  CAS  Google Scholar 

  • Moore, M., Greenway, S., Farris, J., & Guerra, B. (2008). Assessing caffeine as an emerging environmental concern using conventional approaches. Archives of Environmental Contamination and Toxicology, 54(1), 31–35.

    Article  CAS  Google Scholar 

  • Nagel, R. (2002). DarT: the embryo test with the Zebrafish Danio rerio—a general model in ecotoxicology and toxicology. ALTEX, 19(Suppl 1), 38–48.

    Google Scholar 

  • Notch, E. G., & Mayer, G. D. (2009). Wastewater treatment effluent alters nucleotide excision repair in zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 150(2), 307–313.

    Google Scholar 

  • Rodrigues, R. V., Schwarz, M. H., Delbos, B. C., & Sampaio, L. A. (2007). Acute toxicity and sublethal effects of ammonia and nitrite for juvenile cobia Rachycentron canadum. Aquaculture, 271(1–4), 553–557.

    Article  CAS  Google Scholar 

  • Rodriguez, R. S., Haugen, R., Rueber, A., & Huang, C.-c. (2014). Reversible neuronal and muscular toxicity of caffeine in developing vertebrates. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 163, 47–54.

    CAS  Google Scholar 

  • Sankararamakrishnan, N., & Guo, Q. (2005). Chemical tracers as indicator of human fecal coliforms at storm water outfalls. Environment International, 31(8), 1133–1140.

    Article  CAS  Google Scholar 

  • Sauvé, S., Aboulfadl, K., Dorner, S., Payment, P., Deschamps, G., & Prévost, M. (2012). Fecal coliforms, caffeine and carbamazepine in stormwater collection systems in a large urban area. Chemosphere, 86(2), 118–123.

    Article  Google Scholar 

  • Scholz, S., Fischer, S., Gundel, U., Kuster, E., Luckenbach, T., & Voelker, D. (2008). The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing. Environmental Science and Pollution Research International, 15(5), 394–404.

    Article  CAS  Google Scholar 

  • Scott, G. R., & Sloman, K. A. (2004). The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquatic Toxicology, 68(4), 369–392.

    Article  CAS  Google Scholar 

  • Selderslaghs, I. W. T., Hooyberghs, J., Blust, R., & Witters, H. E. (2013). Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae. Neurotoxicology and Teratology, 37, 44–56.

    Article  CAS  Google Scholar 

  • Sfara, V., Mougabure-Cueto, G. A., Zerba, E. N., & Alzogaray, R. A. (2013). Locomotor behaviour of Blattella germanica modified by DEET. PLoS One, 8(12), e83433. doi:10.1371/journal.pone.0083433.

    Article  Google Scholar 

  • Swale, D. R., Sun, B., Tong, F., & Bloomquist, J. R. (2014). Neurotoxicity and mode of action of N, N-diethyl-meta-toluamide (DEET). PLoS One, 9(8), e103713. doi:10.1371/journal.pone.0103713.

    Article  Google Scholar 

  • USEPA (2002). Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. EPA-821-R-02-013. Washington DC. USA.

  • USEPA (2013). Aquatic Life Ambient Water Quality Criteria for Ammonia—Freshwater 2013. EPA 822-R-13-001 Washington DC, USA.

  • Van Landeghem, M. M., Meyer, M. D., Cox, S. B., Sharma, B., & Patiño, R. (2012). Spatial and temporal patterns of surface water quality and ichthyotoxicity in urban and rural river basins in Texas. Water Research, 46(20), 6638–6651.

    Article  Google Scholar 

  • Wang, H., Che, B., Duan, A., Mao, J., Dahlgren, R. A., Zhang, M., et al. (2014). Toxicity evaluation of β-diketone antibiotics on the development of embryo-larval zebrafish (Danio rerio). Environmental Toxicology, 29(10), 1134–1146.

    Article  CAS  Google Scholar 

  • Xia, J., Niu, C., & Pei, X. (2010). Effects of chronic exposure to nonylphenol on locomotor activity and social behavior in zebrafish (Danio rerio). Journal of Environmental Sciences, 22(9), 1435–1440.

    Article  CAS  Google Scholar 

  • Ying, G.-G., Williams, B., & Kookana, R. (2002). Environmental fate of alkylphenols and alkylphenol ethoxylates—a review. Environment International, 28(3), 215–226.

    Article  CAS  Google Scholar 

  • Zhang, L., Xiong, D. M., Li, B., Zhao, Z. G., Fang, W., Yang, K., et al. (2012). Toxicity of ammonia and nitrite to yellow catfish (Pelteobagrus fulvidraco). Journal of Applied Ichthyology, 28(1), 82–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Yen-Hsin Wang, Ya-Ting Wu, and Jie Wei for their assistance in field water collection. This study was financially supported by the Thematic Research Grant from the National Museum of Marine Biology and Aquarium, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Te-Hao Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, TH., Chen, YL., Chen, CY. et al. Assessment of ichthyotoxicity and anthropogenic contamination in the surface waters of Kenting National Park, Taiwan. Environ Monit Assess 187, 265 (2015). https://doi.org/10.1007/s10661-015-4511-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4511-9

Keywords

Navigation