Skip to main content
Log in

A new P. putida instrumental toxicity bioassay

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Here, we present a new toxicity bioassay (CO2-TOX), able to detect toxic or inhibitory compounds in water samples, based on the quantification of Pseudomonas putida KT2440 CO2 production. The metabolically produced CO2 was measured continuously and directly in the liquid assay media, with a potentiometric gas electrode. The optimization studies were performed using as a model toxicant 3,5-DCP (3,5-dichlorophenol); later, heavy metals (Pb2+, Cu2+, or Zn2+) and a metalloid (As5+) were assayed. The response to toxics was evident after 15 min of incubation and at relatively low concentrations (e.g., 1.1 mg/L of 3,5-DCP), showing that the CO2-TOX bioassay is fast and sensitive. The EC50 values obtained were 4.93, 0.12, 6.05, 32.17, and 37.81 mg/L for 3,5-DCP, Cu2+, Zn2+, As5+, and Pb2+, respectively, at neutral pH. Additionally, the effect of the pH of the sample and the use of lyophilized bacteria were also analyzed showing that the bioassay can be implemented in different conditions. Moreover, highly turbid samples and samples with very low oxygen levels were measured successfully with the new instrumental bioassay described here. Finally, simulated samples containing 3,5-DCP or a heavy metal mixture were tested using the proposed bioassay and a standard ISO bioassay, showing that our test is more sensible to the phenol but less sensible to the metal mixtures. Therefore, we propose CO2-TOX as a rapid, sensitive, low-cost, and robust instrumental bioassay that could perform as an industrial wastewater-process monitor among other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bonetto, M. C., Sacco, N. J., Hilding-Ohlsson, A., & Cortón, E. (2012). Metabolism of Klebsiella pneumoniae freeze-dried cultures for the design of BOD bioassays. Letters in Applied Microbiology, 55(1), 370–375.

    CAS  Google Scholar 

  • Campanella, L., Favero, G., Mastrofini, D., & Tomassetti, M. (1997). Further developments in toxicity cell biosensors. Sensors and Actuator B: Chemical, 44(1-3), 279–285.

    Article  CAS  Google Scholar 

  • Catterall, K., Robertson, D., Hudson, S., Teasdale, P. R., Welsh, D. T., & John, R. (2010). A sensitive, rapid ferricyanide-mediated toxicity bioassay developed using Escherichia coli. Talanta, 82(2), 751–757.

    Article  CAS  Google Scholar 

  • Chiappini, S. A., Kormes, D. J., Bonetto, M. C., Sacco, N., & Cortón, E. (2010). A new microbial biosensor for organic water pollution based on measurement of carbon dioxide production. Sensors Actuators B: Chemical, 148(1), 103–109.

    Article  CAS  Google Scholar 

  • Cortón, E., Kocmur, S., Haim, L., & Galagovsky, L. (2000). Potentiometric determination of CO2 concentration in the gaseous phase: applications in different laboratory activities. Journal of Chemical Education, 77(9), 1188–1191.

    Article  Google Scholar 

  • Dalzell, D. J. B., Alte, S., Aspichueta, E., de la Sota, A., Etxebarria, J., Gutiérrez, M., Hoffmann, C. C., Sales, D., Obst, U., & Christofi, N. (2002). A comparison of five rapid direct toxicity assessment methods to determine toxicity of pollutants to activated sludge. Chemosphere, 47(5), 535–545.

    Article  CAS  Google Scholar 

  • Durrieu, C., & Tran-Minh, C. (2002). Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicology and Environmental Safety, 51(3), 206–209.

    Article  CAS  Google Scholar 

  • Fulladosa, E., Murat, J. C., & Villaescusa, I. (2005). Effect of cadmium(II), chromium(VI), and arsenic(V) on long-term viability and growth-inhibition assays using Vibrio fischeri marine bacteria. Archives of Environmental Contamination and Toxicology, 49(3), 299–306.

    Article  CAS  Google Scholar 

  • Fulladosa, E., Murat, J. C., Martínez, M., & Villaescusa, I. (2004). Effect of pH on arsenate and arsenite toxicity to luminescent bacteria (Vibrio fischeri). Archives of Environmental Contamination and Toxicology, 46(2), 176–182.

    CAS  Google Scholar 

  • Gutiérrez, M., Etxebarria, J., & de las Fuentes, L. (2002). Evaluation of wastewater toxicity: comparative study between Microtox® and activated sludge oxygen uptake inhibition. Water Research, 36(4), 919–924.

    Article  Google Scholar 

  • Hsieh, C. Y., Tsai, M. H., Ryan, D. K., & Pancorbo, O. C. (2004). Toxicity of the 13 priority pollutant metals to Vibrio fisheri in the Microtox® chronic toxicity test. Science of the Total Environment, 320(1), 37–50.

    Article  CAS  Google Scholar 

  • Hudson-Edwards, K. A., Macklin, M. G., Miller, J. R., & Lechler, P. J. (2001). Sources, distribution and storage of heavy metals in the Río Pilcomayo, Bolivia. Journal of Geochemical Exploration, 72(3), 229–250.

    Article  CAS  Google Scholar 

  • ISO 10712. (1995). Water Quality – Pseudomonas putida Growth Inhibition Test (Pseudomonas cell multiplication inhibition test). Geneva, Switzerland: International Organization for Standardization.

    Google Scholar 

  • ISO 11348–3. (2007). Water Quality – Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (Luminescent bacteria test). Geneva, Switzerland: International Organization for Standardization.

    Google Scholar 

  • Kilroy, A., & Gray, N. F. (1995). Treatability, toxicity and biodegradability test methods. Biological Reviews of the Cambridge Philosophical Society, 70(2), 243–275.

    Article  CAS  Google Scholar 

  • Lappalainen, J., Juvonen, R., Vaajasaari, K., & Karp, M. (1999). New flash method for measuring the toxicity of solid and colored samples. Chemosphere, 38(5), 1069–1083.

    Article  CAS  Google Scholar 

  • Lopez-Roldan, R., Kazlauskaite, L., Ribo, J., Riva, M. C., González, S., & Cortina, J. L. (2012). Evaluation of an automated luminescent bacteria assay for in situ aquatic toxicity determination. Science of the Total Environment, 440, 307–313.

    Article  CAS  Google Scholar 

  • Macklin, M. G., Payne, I., Preston, D., & Sedgwick, C. (1996). Review of the Porco mine tailings dam burst and associated mining waste problems, Pilcomayo basin, Bolivia. Report to UK Overseas Development Administration, p. 33.

  • Mahendran, B., Choi, N.-C., Choi, J.-W., & Kim, D.-J. (2006). Effect of dissolved oxygen regime on growth dynamics of Pseudomonas spp during benzene degradation. Applied Microbiology and Biotechnology, 71(3), 350–354.

    Article  CAS  Google Scholar 

  • Miller, J. R., Lechler, P. J., Macklin, G., Germanoski, D., & Villarroel, L. F. (2007). Evaluation of particle dispersal from mining and milling operations using lead isotopic fingerprinting techniques, Rio Pilcomayo Basin, Bolivia. Science of the Total Environment, 384(1-3), 355–373.

    Article  CAS  Google Scholar 

  • Miyamoto-Shinohara, Y., Sukenobe, J., Imaizumi, T., & Nakahara, T. (2006). Survival curves for microbial species stored by freeze-drying. Cryobiology, 52(1), 27–32.

    Article  Google Scholar 

  • Muñoz-Rojas, J., Bernal, P., Duque, E., Godoy, P., Segura, A., & Ramos, J. L. (2006). Involvement of cyclopropane fatty acids in the response of Pseudomonas putida KT2440 to freeze-drying. Applied and Environmental Microbiology, 72(1), 472–477.

    Article  Google Scholar 

  • OECD Method 209. (2010). OECD Guideline for the Testing of Chemicals: Activated Sludge, Respiration Inhibition Test (ASRIT). Paris, France: Organisation for Economic Cooperation and Development.

    Google Scholar 

  • Penttinen, O. P. (1995). Chlorophenols in aquatic environments: structure-activity correlations. Annales Zoologici Fennici, 32, 287–294.

    Google Scholar 

  • Plata, M. R., Contento, A. M., Villaseñor, M. J., Cabezas, M. L., & Ríos, A. (2009). Development of a novel biotoxicity screening assay for analytical use. Chemosphere, 76(7), 959–966.

    Article  CAS  Google Scholar 

  • Pollice, A., Rozzi, A., Tomei, M. C., Di Pinto, A. C., & Laera, G. (2001). Inhibiting effects of chloroform on anaerobic microbial consortia as monitored by the Rantox biosensor. Water Research, 35(5), 1179–1190.

    Article  CAS  Google Scholar 

  • Ricco, G., Tomei, M. C., Ramadori, R., & Laera, G. (2004). Toxicity assessment of common xenobiotic compounds on municipal activated sludge: comparison between respirometry and Microtox. Water Research, 38(8), 2103–2110.

    Article  CAS  Google Scholar 

  • Rizzo, L. (2011). Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Research, 45(15), 4311–4340.

    Article  CAS  Google Scholar 

  • Rosen, G., Osorio-Robayo, A., Rivera-Duarte, I., & Lapota, D. (2008). Comparison of bioluminescent dinoflagellate (QwikLite) and bacterial (Microtox) rapid bioassays for the detection of metal and ammonia toxicity. Archives of Environmental Contamination and Toxicology, 54(4), 606–611.

    Article  CAS  Google Scholar 

  • Schmitz, R. P. H., Eisenträger, A., & Dott, W. (1998). Miniaturized kinetic growth inhibition assays with Vibrio fischeri and Pseudomonas putida (application, validation and comparison). Journal of Microbiological Methods, 31(3), 159–166.

    Article  CAS  Google Scholar 

  • Smolders, A. J. P., Lock, R. A. C., Van der Velde, G., Medina Hoyos, R. I., & Roelofs, J. G. M. (2003). Effects of mining activities on heavy metal concentrations in water, sediment, and macroinvertebrates in different reaches of the Pilcomayo River, South America. Archives of Environmental Contamination and Toxicology, 44(3), 314–323.

    Article  CAS  Google Scholar 

  • Tan, T. C., & Lim, E. W. C. (2005). Thermally killed cells of complex microbial culture for biosensor measurement of BOD of wastewater. Sensors Actuators B: Chemical, 107(2), 546–551.

    Article  CAS  Google Scholar 

  • Tizzard, A., Webber, J., Gooneratne, R., John, R., Hay, J., & Pasco, N. (2004). MICREDOX: application for rapid biotoxicity assessment. Analytica Chimica Acta, 522(2), 197–205.

    Article  CAS  Google Scholar 

  • Tothill, I. E., & Turner, A. P. F. (1996). Developments in bioassay methods for toxicity testing in water treatment. Trends in Analytical Chemistry, 15(5), 178–188.

    Article  CAS  Google Scholar 

  • Tzoris, A., Fernandez-Perez, V., & Hall, E. A. H. (2005). Direct toxicity assessment with a mini portable respirometer. Sensors Actuators B: Chemical, 105(1), 39–49.

    Article  CAS  Google Scholar 

  • Van Beelen, P., & Fleuren-Kemilä, A. K. (1997). Influence of pH on the toxic effects of zinc, cadmium, and pentachlorophenol on pure cultures of soil microorganisms. Environmental Toxicology and Chemistry, 16(2), 146–153.

    Article  Google Scholar 

  • Wang, X., Liu, M., Wang, X., Wu, Z., Yang, L., Xia, S., Chen, L., & Zhao, J. (2013). p-Benzoquinone-mediated amperometric biosensor developed with Psychrobacter sp. for toxicity testing of heavy metals. Biosensors and Bioelectronics, 41, 557–562.

    Article  CAS  Google Scholar 

  • Wenfeng, S., Gooneratne, R., Glithero, N., Weld, R. J., & Pasco, N. (2013). Appraising freeze-drying for storage of bacteria and their ready access in a rapid toxicity assessment assay. Applied Microbiology and Biotechnology, 97(23), 10189–10198.

    Article  CAS  Google Scholar 

  • Yong, D., Liu, L., Yu, D., & Dong, S. (2011). Development of a simple method for biotoxicity measurement using ultramicroelectrode array under non-deaerated condition. Analytica Chimica Acta, 701(2), 164–168.

    Article  CAS  Google Scholar 

  • Zosel, J., Oelβner, W., Decker, M., Gerlach, G., & Guth, U. (2011). The measurement of dissolved and gaseous carbon dioxide concentration. Measurement Science and Technology, 22(7), 1–45.

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) and the Agencia Nacional de Promoción Científica y Tecnológica (AGENCIA); we also want to acknowledge the support of the Subsecretaría de Recursos Hídricos de la Nación (Dr. Andrés Rodríguez), y la Dirección Ejecutiva de la Comisión Trinacional para el Desarrollo de la Cuenca del río Pilcomayo (Ing. Claudio Laboranti). We want to thank Ms. Silvia Rodriguez for the English edition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Cortón.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2459 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueredo, F., Abrevaya, X.C. & Cortón, E. A new P. putida instrumental toxicity bioassay. Environ Monit Assess 187, 294 (2015). https://doi.org/10.1007/s10661-015-4499-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4499-1

Keywords

Navigation