Temporal distribution of air quality related to meteorology and road traffic in Madrid

Abstract

The impact of climatology—air temperature, precipitation and wind speed—and road traffic—volume, vehicle speed and percentage of heavy-duty vehicles (HDVs)—on air quality in Madrid was studied by estimating the effect for each explanatory variable using generalized linear regression models controlling for monthly variations, days of week and parameter levels. Every 1 m/s increase in wind speed produced a decrease in PM10 concentrations by 10.3 % (95 % CI 12.6–8.6) for all weekdays and by 12.4 % (95 % CI 14.9–9.8) for working days (up to the cut-off of 2.4 m/s). Increases of PM10 concentrations due to air temperature (7.2 % (95 % CI 6.2–8.3)) and traffic volume (3.3 % (95 % CI 2.9–3.8)) were observed at every 10 °C and 1 million vehicle-km increases for all weekdays; oppositely, slight decreases of PM10 concentrations due to percentage of HDVs (3.2 % (95 % CI 2.7–3.7)) and vehicle speed (0.7 % (95 % CI 0.6–0.8)) were observed at every 1 % and 1 km/h increases. Stronger effects of climatology on air quality than traffic parameters were found.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Akaike, H. (1974). A new look at statistical model identification. IEEE T Automatic Control, 9, 716–722.

    Article  Google Scholar 

  2. Andrade, M., Orsini, C., & Maenhaut, W. (1994). Relation between aerosol sources and meteorological parameters for inhalable atmospheric particles in Sao Paulo City, Brazil. Atmospheric Environment, 28(14), 2307–2315.

    CAS  Article  Google Scholar 

  3. Andrade, M. F., Fornaro, A., Miranda, R. M., Kerr, A., Oyama, B., Andre, P. A., & Saldiva, P. (2012). Vehicle emissions and PM2.5 mass concentrations in six Brazilian cities. Air Quality, Atmosphere and Health, 5(1), 79–85.

    CAS  Article  Google Scholar 

  4. André, P. A., Matera, A., Miraglia, S., & Saldiva, P. (2012). Lean diesel technology and human health: a case study in six Brazilian metropolitn regions. Clinics, 67(6), 639–645.

    Article  Google Scholar 

  5. Artíñano, B., Salvador, P., Alonso, D. G., Querol, X., & Alastuey, A. (2004). Influence of traffic on the PM10 and PM2.5 urban aerosol fractions in Madrid (Spain). The Science of the Total Environment, 334-335, 111–123.

    Article  Google Scholar 

  6. Bapna, M., Raman, R. S., Ramachandran, S., & Rajesh, T. A. (2013). Airborne black carbon concentrations over an urban region in western India—temporal variability, effects of meteorology, and source regions. Environmental Science and Pollution Research, 20, 1617–1631.

    CAS  Article  Google Scholar 

  7. Borge, R., Lumbreras, J., & Rodríguez, E. (2008). Development of a high-resolution emission inventory for Spain using the SMOKE modelling system: a case study for the years 2000 and 2010. Environmental Modelling & Software, 23(4), 1026–1044.

  8. Box, G., Jenkins, G. M., & Reinsel, C. (1994). Time series analyses, forecasting and control. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  9. Burgard, D. A., Bishop, G. A., & Stedman, D. H. (2006). Remote sensing of in-use heavy duty diesel trucks. Environmental Science & Technology, 40, 6938–6942.

    CAS  Article  Google Scholar 

  10. Chirico, R., Prevot, A., De Carlo, P. F., Heringa, M. F., Richter, R., Weingartner, E., & Baltensperger, U. (2011). Aerosol and trace gas vehicle emission factors measured in a tunnel using an aerosol mass spectrometer and other on-line instrumentation. Atmospheric Environment, 45, 2182–2192.

    CAS  Article  Google Scholar 

  11. Cogliani, E. (2001). Air pollution forecast in cities by an air pollution index highly correlated with meteorological variables. Atmospheric Environment, 35, 2871–2877.

    CAS  Article  Google Scholar 

  12. da Silva, C., Saldiva, P., Amato-Lourenço, L., Rodrigues-Silva, F., & Miraglia, S. (2012). Journal of Environmental Management 101, 191–196. Brazil: Evaluation of the air quality benefits of the subway system in São Paulo.

    Google Scholar 

  13. Droprinchinski-Martins, L., Martins, J., Diaz-Freitas, E., Mazzoli, C., Goncalves, F., & Ynoue, R. (2010). Potential health impact of ultrafine particles under clean and polluted urban atmospheric conditions: a model-based study. Air Qual Atmos Health, 3(14), 29–39.

    CAS  Article  Google Scholar 

  14. EDM. (2006). Mobility survey of Madrid, Summary document 2004. Madrid: Transport Authority of Madrid.

    Google Scholar 

  15. EEA. (2013). Air Quality in Europe. 2012 Report. European Environmental Agency: Copenhagen.

    Google Scholar 

  16. EMT. (2006). Annual report. Madrid: Transport Municipal Company of Madrid.

    Google Scholar 

  17. EPTMC. (2010). Road Freight Transport Permanent Survey. Madrid: Ministry of Public Works.

  18. Freitas, S., Longo, K., & Rodrigues, L. (2009). Modelagem numérica da composiçao química da atmosfera e seus impactos no tempo, clima e qualidade do ar. Revista Brasileira de Meteorologia, 24(2), 188–207.

    Article  Google Scholar 

  19. Gallardo, L., Escribano, G., Dawidowski, L., Rojas, N., Andrade, M., & Osses, M. (2012). Evaluation of vehicle emission inventories for carbon monoxide and nitrogen oxides for Bogotá, Buenos Aires, Santiago, and São Paulo. Atmospheric Environment, 47, 12–19.

    CAS  Article  Google Scholar 

  20. Gasmi, T., & González-Ureña, A. (2002). CO2-TEA, mid-infrared, laser-based dial system: featuring ozone dynamics during a “vehicle free” day. Instrumentation Science and Technology, 30(4), 427–438.

    CAS  Article  Google Scholar 

  21. Gokhale, S. (2011). Traffic flow pattern and meteorology at two distinct urban junctions with impacts on air quality. Atmospheric Environment, 45, 1830–1840.

    CAS  Article  Google Scholar 

  22. Guaita, R., Pichiule, M., Maté, T., Linares, C., & Díaz, J. (2011). Short-term impact of particulate matter (PM2.5) on respiratory mortality in Madrid. International Journal of Environmental Health Research, 21(4), 260–274.

    Article  Google Scholar 

  23. Guttikunda, S. K., & Gurjar, B. R. (2012). Role of meteorology in seasonality of air pollution in megacity Delhi, India. Atmospheric Environment, 184, 3199–3211.

    CAS  Google Scholar 

  24. Hagler, G. S. W., Baldauf, R. W., Thoma, E. D., Long, T. R., Snow, R. F., Kinsey, J. S., Oudejans, L., & Gullett, B. K. (2009). Ultrafine particles near a major roadway in Raleigh, North Carolina: downwind attenuation and correlation with traffic-related pollutants. Atmospheric Environment, 43, 1229–1234.

    CAS  Article  Google Scholar 

  25. Harley, R. A., Marr, L. C., Lehner, J. K., & Giddings, S. N. (2005). Changes in motor vehicle emissions on diurnal to decadal time scales and effects on atmospheric composition. Environmental Science & Technology, 39, 5356–5362.

    CAS  Article  Google Scholar 

  26. Hori, A., Hashizume, M., Tsuda, Y., Tsukahara, T., & Nomiyama, T. (2012). Effects of weather variability and air pollutants on energy admissions for cardiovascular and cerebrovascular diseases. International Journal of Environmental Health Research, 22(5), 416–430.

    CAS  Article  Google Scholar 

  27. Imhof, D., Weingartner, E., Ordoñez, C., Gehrig, R., Hill, M., Buchmann, B., & Baltensperger, U. (2005). Real-world emission factors of fine and ultrafine aerosol particles for different traffic situations in Switzerland. Environmental Science & Technology, 39, 8341–8350.

    CAS  Article  Google Scholar 

  28. INFRAS-IWW. (2004). External costs of transport: accidents, environmental and congestion costs of transport in Western Europe. Zurich Karlsruhe: University of Karlsruhe.

    Google Scholar 

  29. Jiménez, E., Linares, C., Martínez, D., & Díaz, J. (2011). Particulate air pollution and short-term mortality due to specific causes among the elderly in Madrid (Spain): seasonal differences. International Journal of Environmental Health Research, 21(5), 372–390.

    Article  Google Scholar 

  30. Kuznetsova, I. N. (2012). The effect of meteorology on air pollution in Moscow during the summer episodes of 2010. Atmospheric and Oceanic Physics, 48(5), 504–515.

    Article  Google Scholar 

  31. Linares, C., & Díaz, J. (2010). Short-term effect of PM2.5 on daily hospital admissions in Madrid (2003-2005). International Journal of Environmental Health Research, 20(2), 129–140.

    CAS  Article  Google Scholar 

  32. Marcelo, F. A., Longo, K., Freitas, S., Mello da Fonseca, R., Marécal, V., & Pirre, M. (2010). An urban emissions inventory for South America and its application in numerical modeling of atmospheric chemical composition at local and regional scales. Atmospheric Environment, 44, 5072–5083.

    Article  Google Scholar 

  33. Monzón, A., & Guerrero, M. J. (2004). Valuation of social and health effects of transport-related air pollution in Madrid (Spain). The Science of the Total Environment, 334–335, 427–434.

    Article  Google Scholar 

  34. Monzón, A., Moragues, A., & Acha, C. (1999). Seasonal analysis of air pollution in Madrid. The Science of the Total Environment, 235, 343–345.

    Article  Google Scholar 

  35. Moragues, A., & Alcaide, T. (1996). The use of a geographical information system to assess the effect of traffic pollution. The Science of the Total Environment, 189–190, 267–273.

    Article  Google Scholar 

  36. Municipality of Madrid. (2009). Emission inventory of green house gases in the city of Madrid. Environment division.

  37. Municipality of Madrid. (2010). Local strategy of air quality in the city of Madrid. Environment, security and mobility division.

  38. Municipality of Madrid. (2012). Air quality plan of the city of Madrid 2011-2015. Environment, security and mobility division.

  39. Municipality of Madrid. (2013). Map of traffic intensity and vehicle-speed of Madrid. Environment, security and mobility division.

  40. Ntziachristos, L., Zhi, N., Geller, M. D., & Sioutas, C. (2007). Particle concentration and characteristics near a major freeway with heavy-duty diesel traffic. Environmental Science & Technology, 41, 2223–2230.

    CAS  Article  Google Scholar 

  41. Pérez-Martínez, P. J. (2012). Energy consumption and emissions form the road transport in Spain: a conceptual approach. Transport Vilnus, 27(4), 383–396.

    Article  Google Scholar 

  42. Perez-Martinez, P. J., & Vassallo, J. M. (2013). Changes in the external costs of freight surface transport in Spain. Research in Transportation Economics, 42(1), 61–76.

    Article  Google Scholar 

  43. Quinet, E. (2004). A meta-analysis of Western European external costs estimates. Transportation Research D, 9, 465–476.

    Article  Google Scholar 

  44. Rodrigues, F., Santos, U., Saldiva, P., Amato, L., & Miraglia, S. (2012). The risk and economic estimation of absenteeism due to air pollution in São Paulo, Brazil. Aerosol and Air Quality Research, 12, 826–833.

    Google Scholar 

  45. Sanchez-Ccoyllo, O. R., Ynoue, R. Y., Martins, L. D., Astolfo, R., Miranda, R. M., Freitas, E. D., Borges, A. S., Fornaro, A., Freitas, H., Moreira, A., & Andrade, M. F. (2009). Vehicular particulate matter emissions in road tunnels in Sao Paulo, Brazil. Environmental Monitoring and Assessment, 149(1–4), 241–249.

    CAS  Article  Google Scholar 

  46. Seigneur, C., Pun, B., Lohman, K., & Wu, S. Y. (2003). Regional modelling of the atmospheric fate and transport of benzene and diesel particles. Environmental Science & Technology, 22, 5236–5246.

    Article  Google Scholar 

  47. Seinfeld, J., & Pandis, S. (1998). Atmospheric chemistry and physics: from air pollution to climate change. NY: Wiley.

    Google Scholar 

  48. Sun, C., Zheng, S., & Wang, R. (2014). Restricting driving for better traffic and clearer skies: did it work in Beijing. Transport Policy, 32, 34–41.

    Article  Google Scholar 

  49. Wang, X., Westerdahl, D., Hu, J., Wu, Y., Yin, H., Pan, X., & Zhang, K. M. (2012). On road diesel vehicle emission factors for nitrogen oxides and black carbon in two Chinese cities. Atmospheric Environment, 46, 45–55.

    CAS  Article  Google Scholar 

  50. Yang, L., Wu, Y., Davis, J. M., & Hao, J. (2011). Estimating the effects of meteorology on PM2.5 reduction during the Summer Olympic Games in Beijing, China. Frontiers of Environmental Science & Engineering in China, 5(3), 331–341.

    CAS  Article  Google Scholar 

  51. Zhang, R., Ho, K., & Shen, Z. (2012). The role of aerosol in climate change, the environment, and human health. Atmospheric and oceanic science letters, 5(2), 156–161.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the European Research Council (Grant 246565) in the framework of the Marie Curie UNITE project and through the program for contracting experienced researchers for scientific and technological research (COFUND, Seventh Framework). Thanks to the Municipality of Madrid for providing air quality and road traffic data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pedro J. Perez-Martinez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perez-Martinez, P.J., Miranda, R.M. Temporal distribution of air quality related to meteorology and road traffic in Madrid. Environ Monit Assess 187, 220 (2015). https://doi.org/10.1007/s10661-015-4452-3

Download citation

Keywords

  • Air pollution modeling
  • Road traffic
  • Climatology
  • Spain