Skip to main content

How climate change might influence the potential distribution of weed, bushmint (Hyptis suaveolens)?

Abstract

Invasive species and climate change are considered as the most serious global environmental threats. In this study, we investigated the influence of projected global climate change on the potential distribution of one of the world’s most successful invader weed, bushmint (Hyptis suaveolens (L.) Poit.). We used spatial data on 20 environmental variables at a grid resolution of 5 km, and 564 presence records of bushmint from its native and introduced range. The climatic profiles of the native and invaded sites were analyzed in a multi-variate space in order to examine the differences in the position of climatic niches. Maximum Entropy (MaxEnt) model was used to predict the potential distribution of bushmint using presence records from entire range (invaded and native) along with 14 eco-physiologically relevant predictor variables. Subsequently, the trained MaxEnt model was fed with Hadley Centre Coupled Model (HadCM3) climate projections to predict potential distribution of bushmint by the year 2050 under A2a and B2a emission scenarios. MaxEnt predictions were very accurate with an Area Under Curve (AUC) value of 0.95. The results of Principal Component Analysis (PCA) indicated that climatic niche of bushmint on the invaded sites is not entirely similar to its climatic niche in the native range. A vast area spread between 34 ° 02′ north and 28 ° 18′ south latitudes in tropics was predicted climatically suitable for bushmint. West and middle Africa, tropical southeast Asia, and northern Australia were predicted at high invasion risk. Study indicates enlargement, retreat, or shift across bushmint’s invasion range under the influence of climate change. Globally, bushmint’s potential distribution might shrink in future with more shrinkage for A2a scenario than B2a. The study outcome has immense potential for undertaking effective preventive/control measures and long-term management strategies for regions/countries, which are at higher risk of bushmint’s invasion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Afolayan, A. J. (1993). Germination and growth features of seed of different sizes in Hyptis suaveolens (L.) Poit. Range Management and Agroforestry, 14, 139–145.

  • Barik, S. K., & Adhikari, D. (2011). Predicting geographic distribution of an invasive species Chromolaena odorata L (King) & H.E. Robins in Indian subcontinent under climate change scenarios. In J. R. Bhatt, J. S. Singh, R. S. Tripathi, S. P. Singh, & R. K. Kohli (Eds.), Invasive alien plants—an ecological appraisal for the Indian sub-continent. Oxfordshire, UK: CABI.

  • Beaumont, L. J., Rachael, R. V., Gallagher, V., Thuiller, W., Downey, P. O., Leishman, M. R., & Hughes, L. (2009). Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Diversity and Distributions, 15, 409–420.

    Article  Google Scholar 

  • Benito, B. M., Martınez-Ortega, M. M., Munoz, L. M., Lorite, J., & Penas, J. (2009). Assessing extinction-risk of endangered plants using species distribution models: a case study of habitat depletion caused by the spread of greenhouses. Biodiversity and Conservation. doi:10.1007/s10531-009-9604-8.

    Google Scholar 

  • Binggeli, P. (1996). A taxonomic, biogeographical and ecological overview of invasive woody plants. Journal of Vegetation Science, 7, 121–124.

    Article  Google Scholar 

  • Broennimann, O., Thuiller, W., Hughes, G., Midgley, G. F., Alkemade, J. R. M., & Guisan, A. (2006). Do geographic distribution, niche property and life form explain plants vulnerability to global change? Global Change Biology, 12, 1079–1093.

  • Broennimann, O., Treier, U. A., Mu¨ller-Scha¨rer, H., Thuiller, W., Peterson, A. T. P., & Guisan, A. (2007). Evidence of climatic niche shift during biological invasion. Ecology Letters, 10, 701–709.

    Article  CAS  Google Scholar 

  • Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., Thuiller, W., Fortin, M. G., Randin, C., Zimmermann, N. E., Graham, C. H., & Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481–497.

    Article  Google Scholar 

  • Collins, M., Tett, S. F. B., & Cooper, C. (2001). The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics, 17, 61–81.

    Article  Google Scholar 

  • Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B., & Wood, S. (1998). Making mistakes when predicting shifts inspecies range in response to global warming. Nature, 391, 783–786.

    Article  CAS  Google Scholar 

  • Dukes, J. S., & Mooney, H. A. (1999). Does global change increase the success of biological invaders? Trends in Ecology & Evolution, 14, 135–139.

    Article  Google Scholar 

  • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27, 861–874.

    Article  Google Scholar 

  • Felippe, G. M., Polo, M., Cardosa, V. J. M., & Figeiredo-Ribeiro, R. C. L. (1983). Germinacao da unidade de dispersao de erva invasora Hyptis suaveolens. An. Sem. Reg. Ecol., 3, 245–261.

  • Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., Mitchell, J. F. B., & Wood, R. A. (2000). The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics, 16, 147–168.

    Article  Google Scholar 

  • Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993–1009.

    Article  Google Scholar 

  • Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186.

    Article  Google Scholar 

  • Guo, Q., Sax, D. F., Hong, Q., & Early, R. (2012). Latitudinal shifts of introduced species: possible causes and implications. Biological Invasions, 14, 547–556.

    Article  Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.

    Article  Google Scholar 

  • Holmes, J. E. (1969). Noxious weeds. Turnoff, 4, 28–29.

    Google Scholar 

  • Hooker J. D., (1885). Flora of British India, Vol. IV, pp. 630.

  • IPCC (2007). Summary for policymakers. In Climate Change 2007, published for the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge.

  • Lauzeral, C., Leprieur, F., Beauchard, O., Duron, Q., Oberdorff, T., & Brosse, S. (2011). Identifying climatic niche shifts using coarse-grained occurrence data: a test with non-native freshwater fish. Global Ecology and Biogeography, 20, 407–414.

    Article  Google Scholar 

  • Liu, X., Guo, Z., Ke, Z., Wang, S., & Li, Y. (2011). Increasing potential risk of a global aquatic invader in Europe in contrast to other continents under future climate change. PLoS ONE, 6(3), e18429. doi:10.1371/journal.pone.0018429.

    Article  CAS  Google Scholar 

  • Martinez-Meyer, E., & Peterson, A. T. (2006). Conservatism of ecological niche characteristics in North American plant species over the pleistocene-to-recent transition. Journal of Biogeography, 33, 1779–1789.

    Article  Google Scholar 

  • Mau-Crimmins, T. M., Schussman, H. R., & Geiger, E. L. (2006). Can the invaded range of a species be predicted sufficiently using only native-range data? Lehmann lovegrass (Eragrostis lehmanniana) in the southwestern United States. Ecological Modelling, 193, 736–746.

    Article  Google Scholar 

  • Monasterio, M., & Sarmiento, G. (1976). Phenological strategies of plant species in the tropical savanna and the semi-deciduous forest in the Venezuelan Llanos. Journal of Biogeography, 3, 325–356.

    Article  Google Scholar 

  • Padalia, H., Kudrat, M., & Sharma, K. P. (2013). Mapping sub-pixel occurrence of an alien invasive Hyptis suaveolens (L.) Poit.using spectral unmixing technique. International Journal of Remote Sensing, 34, 325–340.

    Article  Google Scholar 

  • Parsons, W.T., Cuthburtson, E.G. (2000). Noxious weeds of Australia. CSIRO publications, 490–491.

  • Peterson, A. T. (2003). Predicting the geography of species’ invasions via ecological niche modeling. The Quarterly Review of Biology, 78, 419–433.

    Article  Google Scholar 

  • Peterson, A. T., & Holt, R. D. (2003). Niche differentiation in Mexican birds: using point occurrences to detect ecological innovation. Ecology Letters, 6, 774–782.

    Article  Google Scholar 

  • Peterson, A. T., Papes, M., & Eaton, M. (2007). Transferability and model evaluation in ecological niche modeling: a comparison of GARP and MaxEnt. Ecography, 30, 550–560.

    Article  Google Scholar 

  • Peterson, A. T., Stewart, A., Mohamed, K. I., & Arau’jo, M. B. (2008). Shifting global invasive potential of European plants with climate change. PLoS ONE, 3, 1–7.

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.

    Article  Google Scholar 

  • Phillips, S. J., DudĂ­k, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., & Ferrier, S. (2009). Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19, 181–197.

    Article  Google Scholar 

  • Pope, V. D., Gallani, M. L., Rowntree, P. R., & Stratton, R. A. (2000). The impact of new physical parameterizations in the Hadley Centre climate model—HadAM3. Climate Dynamics, 16, 123–146.

    Article  Google Scholar 

  • Raizada, P. (2006). Ecological and vegetative characteristics of a potent invader, Hyptis suaveolens Poit. from India. Lyonia, 11(2), 115–12.

    Google Scholar 

  • Reichler, T., & Kim, J. (2008). How well do coupled models simulate today’s climate? Bulletin of the American Meteorological Society, 89, 303–311.

    Article  Google Scholar 

  • Robertson, M. P., Villet, M. H., & Palmer, A. R. (2004). A fuzzy classification technique for predicting species’ distributions: applications using invasive alien plants and indigenous insects. Diversity and Distributions, 10, 461–474.

    Article  Google Scholar 

  • Roura-Pascual, N., Suarez, A. V., Gomez, C., Pons, P., Touyama, Y., Wild, A. L., & Peterson, A. T. (2004). Geographical potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change. Proceedings of the Royal Society of London, 271, 2527–2534.

  • Sarmiento, G. (1984). The ecology of neotropical savannas. Cambridge: Harvard University Press.

    Book  Google Scholar 

  • Sax, D. F., Stachowicz, J. J., Brown, J. H., Bruno, J. F., Dawson, M. N., Gaines, S. D., Grosberg, R. K., Hastings, A., Holt, R. D., Mayfield, M. M., O’Connor, M. I., & Rice, W. R. (2007). Ecological and evolutionary insights from species invasions. Trends in Ecology & Evolution, 22, 465–471.

    Article  Google Scholar 

  • Sharma, G. P., & Raghubanshi, A. S. (2009). Plastic responses to different habitat type contribute to Hyptis suaveolens Poit. invasiveness in the dry deciduous forest of India. AMBIO: A Journal of the Human Environment, 38(6), 342–344.

    Article  Google Scholar 

  • Sharma, G. P., Raizada, P., & Raghubanshi, A. S. (2009). Hyptis suaveolens: an emerging invader of Vindhyan plateau India. Weed Biology and Management, 9, 185–191.

    Article  Google Scholar 

  • Solomon, S., Qin, D., Manning, M., Alley, R. B., Berntsen, T., Bindoff, N. L., Chen, Z., Chidthaisong, A., Gregory, J. M., Hegerl, G. C., Heimann, M., Hewitson, B., Hoskins, B. J., Joos, F., Jouzel, J., Kattsov, V., Lohmann, U., Matsuno, T., Molina, M., Nicholls, N., Overpeck, J., Raga, G., Ramaswamy, V., Ren, J., Rusticucci, M., Somerville, R., Stocker, T. F., Whetton, P., Wood, R. A., & Wratt, D. (2007). Technical summary. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Taylor, S., Kumar, L., Reid, N., & Kriticos, D. J. (2012). Climate change and the potential distribution of an invasive shrub, Lantana camara L. PLoS ONE, 7(4), e35565.

    Article  CAS  Google Scholar 

  • Warren, D. L., Glor, R. E., & Turelli, M. (2008). Climate niche identity versus conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868–2883.

    Article  Google Scholar 

  • Welk, E. (2004). Constraints in range predictions of invasive plant species due to non-equilibrium distribution patterns: purple loosestrife (Lythrum salicaria) in North America. Ecological Modelling, 179, 551–567.

    Article  Google Scholar 

  • Welk, E., Schubert, K., & Hoffmann, M. H. (2002). Present and potential distribution of invasive garlic mustard (Alliaria petiolata) in North America. Diversity and Distributions, 8, 219–233.

    Article  Google Scholar 

  • Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., & Guisan, A., (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763–773.

  • Wulff, R. D. (1987). Effects of irradiance, temperature, and water status on growth and photosynthetic capacity of Hyptis suaveolens. Canadian Journal of Botany, 65, 2501–2506.

    Article  Google Scholar 

  • Wulff, R. D., & Medina, E. (1971). Germination of seeds in Hyptis suaveolens (L.) Poit. Plant and Cell Physiology, 12, 567–579.

    Google Scholar 

  • Yang, X.-Q., Kushwaha, S. P. S., Saran S., Xu, J., & Roy, P. S. (2013). MaxEnt modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 51, 83–87.

Download references

Acknowledgments

The authors are grateful to Dr. Y.V.N. Krishna Murthy, Director, Indian Institute of Remote Sensing (IIRS), Dehradun, for encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitendra Padalia.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padalia, H., Srivastava, V. & Kushwaha, S.P.S. How climate change might influence the potential distribution of weed, bushmint (Hyptis suaveolens)?. Environ Monit Assess 187, 210 (2015). https://doi.org/10.1007/s10661-015-4415-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4415-8

Keywords

  • Invasive
  • Niche modeling
  • MaxEnt
  • HadCM3
  • PCA