Anderson, J.R., Hardy, E.E., Roach, J.T. & Witmer, R.E. (1976). A land use and land cover classification system for use with remote sensor data. Washington: United States Government Printing Office.
Badoe, D. A., & Miller, E. J. (2000). Transportation–land-use interaction: empirical findings in North America, and their implications for modeling. Transportation Research Part D: Transport and Environment, 5(4), 235–263.
Article
Google Scholar
Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1), 3–31.
CAS
Article
Google Scholar
Batty, M. (2007). Cities and complexity: understanding cities with cellular automata, agent-based models, and fractals. Cambridge: The MIT press.
Google Scholar
Batty, M., Xie, Y., & Sun, Z. (1999). Modeling urban dynamics through GIS-based cellular automata. Computers, Environment and Urban Systems, 23(3), 205–233.
Article
Google Scholar
Berger, T. (2001). Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis. Agricultural Economics, 25(2–3), 245–260.
Article
Google Scholar
Brown, D.G., Goovaerts, P., Burnicki, A., & Li, M.Y. (2002). Stochastic simulation of land-cover change using geostatistics and generalized additive models. Photogrammetric Engineering and Remote Sensing, 68(10), 1051–1061.
Burkett, V. R., Zilkoski, D. B., & Hart, D. A. (2002). Sea-level rise and subsidence: implications for flooding in New Orleans, Louisiana. In US Geological Survey Subsidence Interest Group Conference: Proceedings of the Technical Meeting, Galveston, Texas, 27-29 November 2001.
Clarke, K. C., & Gaydos, L. J. (1998). Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 12(7), 699–714.
CAS
Article
Google Scholar
Clarke, K.C., Dietzel, C., & Goldstein, N.C. (2007). A decade of SLEUTHing: lessons learned from applications of a cellular automaton land use change model. Classics in IJGIS: twenty years of the international journal of geographical information science and systems, 413-427.
Coastal Protection and Restoration Authority of Louisiana (CPRA) (2012). Louisiana’s coastal master plan for a sustainable coast. State of Louisiana, Baton Rouge, p. 189.
Crooks, A., Castle, C., & Batty, M. (2008). Key challenges in agent-based modelling for geo-spatial simulation. Computers, Environment and Urban Systems, 32(6), 417–430.
Article
Google Scholar
Day, J. W., Boesch, D. F., Clairain, E. J., Kemp, G. P., Laska, S. B., Mitsch, W. J., et al. (2007). Restoration of the Mississippi delta: lessons from hurricanes Katrina and Rita. Science, 315(5819), 1679–1684.
Dewan, A. M., & Yamaguchi, Y. (2009). Using remote sensing and GIS to detect and monitor land use and land cover change in Dhaka Metropolitan of Bangladesh during 1960-2005. Environmental Monitoring and Assessment, 150(1–4), 237–249.
Article
Google Scholar
Dobson, J.E., Ferguson, R.L., Field, D.W., Wood, L.L., Haddad, K.D., Iredale, I.H., et al. (1995). NOAA Coastal Change Analysis Program (C-CAP): guidance for regional implementation. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service.
Feng, Y., & Liu, Y. (2012). A heuristic cellular automata approach for modelling urban land-use change based on simulated annealing. International Journal of Geographical Information Science, 27(3), 449–466.
Article
Google Scholar
Foody, G. M. (1996). Relating the land-cover composition of mixed pixels to artificial neural network classification output. Photogrammetric Engineering and Remote Sensing, 62(5), 491–498.
Google Scholar
García, A. M., Santé, I., Boullón, M. & Crecente, R. (2013). Calibration of an urban cellular automaton model by using statistical techniques and a genetic algorithm. Application to a small urban settlement of NW Spain. International Journal of Geographical Information Science, 1-19.
Gong, P. (1996). Integrated analysis of spatial data from multiple sources: using evidential reasoning and artificial neural network techniques for geological mapping. American Society for Photogrammetry and Remote Sensing, 62(5).
González, J. L., & Tornqvist, T. E. (2006). Coastal Louisiana in crisis: subsidence or sea level rise? Eos. Transactions American Geophysical Union, 87(45), 493–498.
Article
Google Scholar
Jain, A. K., Jianchang, M., & Mohiuddin, K. M. (1996). Artificial neural networks: a tutorial. Computer, 29(3), 31–44.
Article
Google Scholar
Ju, W., & Lam, N. (2007). Urban land use classification: applying texture analysis and artificial intelligence. Imaging Notes, 22(3), 26–30.
Google Scholar
Lam, N.S.N., Arenas, H., Li, Z., Liu, K.B. (2009a). An estimate of population impacted by climate change along the U.S. Coast. Journal of Coastal Research, 1522-1526.
Lam, N.S.N., Arenas, H., Pace, K., LeSage, J., & Campanella, R. (2012). Predictors of business return in New Orleans after Hurricane Katrina. PloS One, 7(10), e47935.
Lam, N.S.N., Pace, K., Campanella, R., LeSage, J., & Arenas, H. (2009b). Business return in New Orleans: decision making amid post-Katrina uncertainty. PloS One, 4(8), e6765.
Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources, 28(1), 205–241.
Article
Google Scholar
Lauf, S., Haase, D., Hostert, P., Lakes, T., & Kleinschmit, B. (2012). Uncovering land-use dynamics driven by human decision-making—a combined model approach using cellular automata and system dynamics. Environmental Modelling & Software, 27–28, 71–82.
Leemans, R., & Eickhout, B. (2004). Another reason for concern: regional and global impacts on ecosystems for different levels of climate change. Global Environmental Change, 14(3), 219–228.
Article
Google Scholar
Li, X., & Yeh, A. G.-O. (2002). Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 16(4), 323–343.
Article
Google Scholar
Li, X., & Yeh, A. G.-O. (2004). Data mining of cellular automata's transition rules. International Journal of Geographical Information Science, 18(8), 723–744.
Article
Google Scholar
Liu, J., Dietz, T., Carpenter, S.R., Folke, C., Alberti, M., Redman, C.L., et al. (2007). Coupled human and natural systems. AMBIO: A Journal of the Human Environment, 36(8), 639–649.
Liu, X., Li, X., Shi, X., Huang, K., & Liu, Y. (2012). A multi-type ant colony optimization (MACO) method for optimal land use allocation in large areas. International Journal of Geographical Information Science, 26(7), 1325–1343.
Liu, X., Li, X., Shi, X., Zhang, X., & Chen, Y. (2010). Simulating land-use dynamics under planning policies by integrating artificial immune systems with cellular automata. International Journal of Geographical Information Science, 24(5), 783–802.
Lo, C. P., & Yang, X. (2002). Drivers of land-use/land-cover changes and dynamic modeling for the Atlanta, Georgia metropolitan area. Photogrammetric Engineering and Remote Sensing, 68(10), 1073–1082.
Google Scholar
Mahajan, Y., & Venkatachalam, P. (2009). Neural network based cellular automata model for dynamic spatial modeling in GIS. In O. Gervasi et al. (Eds.), Computational science and its applications—ICCSA 2009 (pp. 341–352). Heidelberg: Springer Berlin.
Chapter
Google Scholar
Murray-Rust, D., Rieser, V., Robinson, D.T., Milicic, V., & Rounsevell, M. (2013). Agent-based modelling of land use dynamics and residential quality of life for future scenarios. Environmental Modelling & Software, 46, 75–89.
Okwuashi, O., Isong, M., Eyo, E., Eyoh, A., Nwanekezie, O., & Olayinka, D.N., et al. (2012). GIS Cellular automata using artificial neural network for land use change simulation of Lagos, Nigeria. Journal of Geography and Geology, 4(2).
Overmars, K. P., De Koning, G. H. J., & Veldkamp, A. (2003). Spatial autocorrelation in multi-scale land use models. Ecological Modelling, 164(2–3), 257–270.
Article
Google Scholar
Parker, D.C., Manson, S.M., Janssen, M.A., Hoffmann, M.J., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: a review. Annals of the Association of American Geographers, 93(2), 314–337.
Perez-Vega, A., Mas, J. F., & Ligmann-Zielinska, A. (2012). Comparing two approaches to land use/cover change modeling and their implications for the assessment of biodiversity loss in a deciduous tropical forest. Environmental Modelling & Software, 29(1), 11–23.
Article
Google Scholar
Reyes, E., White, M. L., Martin, J. F., Kemp, G. P., Day, J. W., & Aravamuthan, V. (2000). Landscape modeling of coastal habitat change in the Mississippi delta. Ecology, 81(8), 2331–2349.
Schweitzer, C., Priess, J. A., & Das, S. (2011). A generic framework for land-use modelling. Environmental Modelling & Software, 26(8), 1052–1055.
Article
Google Scholar
Stewart, T. J., Janssen, R., & Van Herwijnen, M. (2004). A genetic algorithm approach to multiobjective land use planning. Computers & Operations Research, 31(14), 2293–2313.
Article
Google Scholar
Stokstad, E. (2005). Louisiana’s wetlands struggle for survival: new focus. Science, 310(5752), 1264–1266.
Turner, B. L. (2010). Vulnerability and resilience: coalescing or paralleling approaches for sustainability science? Global Environmental Change, 20(4), 570–576.
Article
Google Scholar
Vicari, A., Alexis, H., Del Negro, C., Coltelli, M., Marsella, M., & Proietti, C. (2007). Modeling of the 2001 lava flow at Etna volcano by a cellular automata approach. Environmental Modelling & Software, 22(10), 1465–1471.
Wang, F. (2007). Land-cover and land-use study using genetic algorithms, petri nets, and cellular automata. (Ph.D. dissertation). Louisiana State University.
Wang, Z.M., Zhang, B., Zhang, S.Q., Li, X.Y., Liu, D.W., & Song, K.S., et al. (2006). Changes of land use and of ecosystem service values in Sanjiang Plain, northeast China. Environmental Monitoring and Assessment, 112(1–3), 69–91.
Ward, D. P., Murray, A. T., & Phinn, S. R. (2000). A stochastically constrained cellular model of urban growth. Computers, Environment and Urban Systems, 24(6), 539–558.
Article
Google Scholar
Wear, D. N., & Bolstad, P. (1998). Land-use changes in southern Appalachian landscapes: spatial analysis and forecast evaluation. Ecosystems, 1(6), 575–594.
Article
Google Scholar
Wu, F., & Webster, C. J. (1998). Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environment and Planning B: Planning and Design, 25(1), 103–126.
Article
Google Scholar
Zhou, G. (2006). Detecting the social-economic conditions of urban neighborhoods through a combined methodology of wavelet transform and artificial neural networks. (Ph.D. dissertation). Louisiana State University.
Zhou, J., & Civco, D. L. (1996). Using genetic learning neural networks for spatial decision making in GIS. Bethesda: ETATS-UNIS: American Society for Photogrammetry and Remote Sensing.
Google Scholar