Spatial distribution and pollution assessment of trace metals in surface sediments of Ziqlab Reservoir, Jordan

  • Ahmed A. Al-Taani
  • Awni T. Batayneh
  • Nazem El-Radaideh
  • Habes Ghrefat
  • Taisser Zumlot
  • Abdulla M. Al-Rawabdeh
  • Talal Al-Momani
  • Aymen Taani


Surface sediment samples were collected from Ziqlab dam in northwestern Jordan to investigate the spatial distribution of selected trace metals and assess their pollution levels. The results showed that the concentrations of Pb, Cd, and Zn exceeded the environmental background values. Cd, Ni, and Cr contents were higher than the threshold effect level (TEL) in 63, 83, and 60 % of the reservoir sediments, respectively; whereas Pb, Zn, and Cu were less than the TEL limit. The concentrations of trace metals in reservoir sediment varied spatially, but their variations showed similar trends. Elevated levels of metals observed in the western part (adjacent to the dam wall) were coincided with higher contents of clay-silt fraction and total organic matters. Multivariate analysis indicated that Pb, Co, and Mn may be related to the lithologic component and/or the application of agrochemicals in the upstream agricultural farms. However, Cd and Zn concentrations were probably elevated due to inputs from agricultural sources, including fertilizers. Evaluation of contamination levels by the Sediment Quality Guidelines of the US-EPA, revealed that sediments were non-polluted to moderately polluted with Pb, Cu, Zn, and Cr, but non-polluted to moderately to heavily polluted with Ni and non-polluted with Mn. The geoaccumulation index showed that Ziqlab sediments were unpolluted with Pb, Cu, Zn, Ni, Cr, Co, and Mn, but unpolluted to moderately polluted with Cd. The high enrichment values for Cd and Pb (>2) indicate their anthropogenic sources, whereas the remaining elements were of natural origins consistent with their low enrichment levels.


Metal contamination Reservoir sediments Sediment quality guidelines Geoaccumulation index Enrichment factor Jordan 



The authors would like to express sincere gratitude to the Ministry of Water and Irrigation, Ministry of Agriculture, Al-Albyat University, and Yarmouk University in Jordan for the help and support they provided


  1. Abed, A. M. (1982). Geology of Jordan. Amman: Al-Nahada Al-Islamiah Library.Google Scholar
  2. Abed, A. M., & Ashour, T. R. (1987). Petrography and age determination of the NW Jordan phosphorites. Dirasat, 14, 247–263.Google Scholar
  3. Abed, A. M., Sadaqah, R., & Al Kuisi, M. (2008). Uranium and potentially toxic metals during the mining, beneficiation and processing of phosphorite and their effects on ground water in Jordan. Mine Water and the Environment, 27, 171–182.CrossRefGoogle Scholar
  4. Abu-Rukah, Y., & Ghrefat, H. A. (2004). Ion chemistry of waters impounded by the Ziqlab dam, Jordan, and weathering processes—a case study. International Journal of Environmental Pollution, 21, 263–276.CrossRefGoogle Scholar
  5. Al-Rawabdeh, A., Al-Ansari, N., Al-Taani, A. A., & Knutsson, S. (2013). A GIS-based drastic model for assessing aquifer vulnerability in Amman-Zerqa groundwater basin, Jordan. Engineering, 5, 490–504.CrossRefGoogle Scholar
  6. Al-Taani, A. A. (2013). Seasonal variations in water quality of Al-Wehda Dam North of Jordan and water suitability for irrigation in summer. Arabian Journal of Geosciences, 6, 1131–1140.CrossRefGoogle Scholar
  7. Al-Taani, A. A. (2014). Trend analysis in water quality of Al-Wehda Dam, NW Jordan. Environmental Assessment and Monitoring, 186, 6223–6239.CrossRefGoogle Scholar
  8. Al-Taani, A. A., Batayneh, A., El-Radaideh, N., Al-Momani, I., & Rawabdeh, A. (2012). Monitoring of selenium concentrations in major springs of Yarmouk Basin, North Jordan. World Applied Sciences Journal, 18, 704–714.Google Scholar
  9. Al-Taani, A. A., Batayneh, A., Mogren, S., Nazzal, N., Ghrefat, H., Zaman, H., et al. (2013). Groundwater quality of coastal aquifer systems in the eastern coast of the Gulf of Aqaba, Saudi Arabia. Journal of Applied Science and Agriculture, 8, 768–778.Google Scholar
  10. Al-Taani, A. A., Batayneh, A., Nazzal, Y., Ghrefat, H., Elawadi, E., & Zaman, H. (2014). Status of trace metals in surface seawater of the Gulf of Aqaba, Saudi Arabia. Marine Pollution Bulletin, 86, 582–590.CrossRefGoogle Scholar
  11. Bai, J., Cui, B., Chen, B., Zhang, K., Deng, W., Gao, H., et al. (2011a). Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecological Modelling, 222, 301–306.CrossRefGoogle Scholar
  12. Bai, J., Huang, L., Yan, D., Wang, Q., Gao, H., Xiao, R., et al. (2011b). Contamination characteristics of heavy metals in wetland soils along a tidal ditch of the Yellow River Estuary, China. Stochastic Environmental Research and Risk Assessment, 25, 671–676.CrossRefGoogle Scholar
  13. Bai, J., Xiao, R., Cui, B., Zhang, K., Wang, Q., Liu, X., et al. (2011c). Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China. Environmental Pollution, 159, 817–824.CrossRefGoogle Scholar
  14. Basnyat, P., Teeter, L., Lockaby, B. G., & Flynn, K. M. (2000). Land use characteristics and water quality: a methodology for valuing of forested buffers. Environmental Management, 26, 153–161.CrossRefGoogle Scholar
  15. Batayneh, A. T. (2010). Heavy metals in water springs of the Yarmouk Basin, North Jordan and their potentiality in health risk. International Journal of Physical Sciences, 5, 997–1003.Google Scholar
  16. Batayneh, A. T. (2012). Toxic (aluminum, beryllium, boron, chromium and zinc) in groundwater: health risk assessment. International Journal of Environmental Sciences and Technology, 9, 153–162.CrossRefGoogle Scholar
  17. Batayneh, A., Ghrefat, H., Mogren, S., Laboun, A., Qaisy, S., Zumlot, T., et al. (2012). Assessment of the physicochemical parameters and heavy metals toxicity: application to groundwater quality in unconsolidated shallow aquifer system. Research Journal of Environmental Toxicology, 6, 169–183.CrossRefGoogle Scholar
  18. Batayneh, A., Ghrefat, H., Zumlot, T., Elawadi, E., Mogren, S., Zaman, Z., et al. (2014). Assessing of metals and metalloids in surface sediments along the Gulf of Aqaba Coast, Northwestern Saudi Arabia. Journal of Coastal Research. doi: 10.2112/JCOASTRES-D-13-00143.1. in Press.Google Scholar
  19. Caeiro, S., Costa, M. H., Ramos, T. B., Fernandes, F., Silveira, N., Coimbra, A., et al. (2005). Assessing heavy metal contamination in Sado Estuary sediment: an index analysis approach. Ecological Indicators, 5, 151–169.CrossRefGoogle Scholar
  20. Christophoridis, C., Dedepsidis, D., & Fytianos, K. (2009). Occurrence and distribution of selected heavy metals in the surface sediments of Thermaikos Gulf N. Greece. Assessment using pollution indicators. Journal of Hazardous Materials, 168, 1082–1091.CrossRefGoogle Scholar
  21. Dean, L. (2005). The Middle East and North Africa 2006. Europe regional surveys of the world (52nd ed.). London: Routledge.Google Scholar
  22. Demirak, A., Yilmaz, F., Tuna, A., & Ozdemir, N. (2006). Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. Chemosphere, 63, 1451–1458.CrossRefGoogle Scholar
  23. Diagomanlin, V., Farhang, M., Ghazi-Khansari, M., & Jafar-Zadeh, N. (2004). Heavy metals (Ni, Cr, Cu) in the Karoon waterway river, Iran. Toxicology Letters, 151, 63–68.CrossRefGoogle Scholar
  24. Drake, C. (1997). Water Resource Conflicts in the Middle East. Journal of Geography, 96, 4–12.Google Scholar
  25. Eimers, M. C., Evans, R. D., & Welbourn, P. M. (2002). Partitioning and bioaccumulation of cadmium in artificial sediment systems: application of a stable isotope tracer technique. Chemosphere, 46, 543–551.CrossRefGoogle Scholar
  26. El-Radaideh, N., Al-Taani, A. A., Al-Momani, T., Tarawneh, K., Batayneh, A., & Taani, A. (2014). Evaluating the potential of sediments in Ziqlab Reservoir (northwest Jordan) for soil replacement and amendment. Lake and Reservoir Management, 30, 32–45.CrossRefGoogle Scholar
  27. Fan, A. M. (1996). An introduction to monitoring and environmental and human risk assessment of metal. In Toxicology of Metals; Magos, L., Suzuki, T., Eds.; CRC Lewis Publishers: Boca Raton. p. 5–9Google Scholar
  28. Gao, H., Bai, J., Xiao, R., Liu, P., Jiang, W., & Wang, J. (2013). Levels, sources and risk assessment of trace elements in wetland soils of a typical shallow freshwater lake, China. Stochastic Environmental Research and Risk Assessment, 27, 275–284.CrossRefGoogle Scholar
  29. Giesy, J. P., & Hoke, R. A. (1990). Freshwater sediment quality criteria: toxicity bioassessment. In R. Baudo, J. P. Giesy, & M. Muntao (Eds.), In sediment chemistry and toxicity of in-place pollutants (p. 391). Ann Arbor: Lewis Publishers.Google Scholar
  30. Gonzalez, Z. I., Krachler, M., Cheburkin, A. K., & Shotyk, W. (2006). Spatial distribution of natural enrichments of arsenic, selenium, and uranium in a minerotrophic peatland, Gola diLago, Canton Ticino, Switzerland. Environmental Science & Technology, 40, 6568–6574.CrossRefGoogle Scholar
  31. Hakanson, L., & Jasson, M. (1983). Principles of lake sedimentology. Berlin: Springer.CrossRefGoogle Scholar
  32. He, Z. L., Yang, X. E., & Stoffella, P. J. (2005). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19, 125–140.CrossRefGoogle Scholar
  33. Hesse, P. R. (1972). Textbook of soil chemical analysis (p. 520). New York (NY): Chemical Publications.Google Scholar
  34. Jarrar, M., & Mustafa, H. (1995). Mineralogical and geochemical study of the oil shale of Wadi Esh-Shallalah (NW Jordan). Abhath Al-Yarmouk, 4, 111–136.Google Scholar
  35. Kalbitz, K., & Wennrich, R. (1998). Mobilization of heavy metals and arsenic in polluted wetland. Soils and its dependence on dissolved organic matter. Science of the Total Environment, 209, 27–39.CrossRefGoogle Scholar
  36. Lafabrie, C., Pergent, G., Kantin, R., Pergent-Martini, C. & Gonzalez, J. L. (2007). Trace metals assessment in water, sediment, mussel and seagrass species-validation of the use of posidonia oceanica as a metal biomonitor. Chemosphere, 68, 2033–2039.Google Scholar
  37. Laing, G. D., Meyer, B. D., Meers, E., Lesage, E., Moortel, A. V. D., Tack, F. M. G., et al. (2008). Metal accumulation in intertidal marshes: role of sulphide precipitation. Wetlands, 28, 735–746.CrossRefGoogle Scholar
  38. Leopold, E. N., Jung, M. C., Auguste, O., Ngatcha, N., Georges, E., & Lape, M. (2008). Metals pollution in freshly deposited sediments from river Mingoa, main tributary to the Municipal lake of Yaounde, Cameroon. Geoscience Journal, 12, 337–347.CrossRefGoogle Scholar
  39. Loring, D. H., & Rantala, R. T. (1992). Manual for the geochemical analysis of marine sediments and suspended particulate matter. Earth Science Reviews, 32, 235–263.CrossRefGoogle Scholar
  40. MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31.CrossRefGoogle Scholar
  41. Muller, G. (1979). Heavy metals in the sediment of the Rhine-Changes seity, 1971. Umsch Wiss Tech, 79, 778–783.Google Scholar
  42. Muller, G. (1981). The heavy metal pollution of the sediments of Neckars and its tributary: a stocktaking. Chemiker-Zeitung, 105, 157–164.Google Scholar
  43. Murray, K. S., Cauvent, D., Lybeer, M., & Thomas, J. C. (1999). Particle size and chemical control of heavy metals in bed sediment from the Rouge River, southeast Michigan. Environmental Science and Technology, 33, 397–404.CrossRefGoogle Scholar
  44. MWI (Ministry of Water and Irrigation), 2008, National water master plan. Amman: Ministry of Water and Irrigation, Jordan.
  45. Osher, L. J., Leclerc, L., Wiersma, G. B., Hess, C. T. & Guiseppe, V. E. (2006). Heavy metal contamination from historic mining in upland soil and estuarine sediments of Egypt Bay, Maine, USA. Estuarine, Coastal and Shelf Science, 70, 169–179.Google Scholar
  46. Pekey, H. (2006). Heavy Metals Pollution Assessment in Sediments of the Izmit Bay, Turkey. Environmental Monitoring and Assessment, 123, 219–31.Google Scholar
  47. Saadoun, I., Bataineh, E. & Al-Handal, A. (2008). The primary production conditions of Zeqlab Dam (Reservoir). Jordan Journal of Biological Sciences, 1, 67–72.Google Scholar
  48. Sakan, S. M., DorDevic, D. S., Lazic, M. M., & Tadic, M. M. (2012). Assessment of arsenic and mercury contamination in the Tisa River sediments and industrial canal sediments (Danube alluvial formation), Serbia. Journal of Environmental Science and Health, Part A, 47, 109–116.CrossRefGoogle Scholar
  49. Shatnawi, A. (2002). Hydrological and hydrochemical study for Zeglab Dam. Master Thesis, Al al-Bayt University, Jordan.Google Scholar
  50. Shea, D. (1988). Developing national sediment quality criteria. Environmental Science and Technology, 22, 1256–1261.CrossRefGoogle Scholar
  51. Simex, S. A., & Helz, G. R. (1981). Regional geochemistry of trace elements in Checapeake Bay. Environmental Geology, 3, 315–323.CrossRefGoogle Scholar
  52. Smith, S. L., MacDonald, D. D., Keenleyside, K. A., Ingersoll, C. G., & Field, L. J. (1996). A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. Journal of Great Lakes Research, 22, 624–638.CrossRefGoogle Scholar
  53. Spisto, G. (1989). The chemistry of soils (p. 277). New York (NY): Oxford University Press.Google Scholar
  54. Taylor, S. R. (1964). Abundance of chemical elements in the continental crust; a new table. Geochimica et Cosmochimica Acta, 28, 1273–1285.CrossRefGoogle Scholar
  55. Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. The Geological Society of America, 72, 175–192.CrossRefGoogle Scholar
  56. USA Environmental Protection Agency (USEPA). (1997). The incidence and severity of sediments contamination in surface waters of the U.S., v.1-national sediment quality survey. USEPA Report 823-R-97-006.Google Scholar
  57. Wakida, F. T., Lara-Ruiz, D., Temores-Pena, J., Rodriguez-Ventura, J. G., Diaz, C., & Garcia-Flores, E. (2008). Heavy metals in sediments of the Tecate River, Mexico. Environmental Geology, 54, 637–642.CrossRefGoogle Scholar
  58. Wittmann, G. T. W. (1981). Toxic metals. In: Metal Pollution in the Aquatic Environment, U. Förstner and G. T. W. Wittmann (Eds.). 2nd Edition. Spring-Verlag, Berlin. p. 3–70Google Scholar
  59. Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., et al. (2001). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159, 84–91.CrossRefGoogle Scholar
  60. Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China-Weathering features anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54, 1051–1070.CrossRefGoogle Scholar
  61. Zheng, N., Wang, Q., Liang, Z., & Zheng, D. (2008). Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environmental Pollution, 154, 135–142.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ahmed A. Al-Taani
    • 1
  • Awni T. Batayneh
    • 1
  • Nazem El-Radaideh
    • 1
  • Habes Ghrefat
    • 2
  • Taisser Zumlot
    • 2
  • Abdulla M. Al-Rawabdeh
    • 3
  • Talal Al-Momani
    • 1
  • Aymen Taani
    • 4
  1. 1.Department of Earth and Environmental SciencesYarmouk UniversityIrbidJordan
  2. 2.Department of Geology and GeophysicsKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of Geomatics EngineeringUniversity of CalgaryCalgaryCanada
  4. 4.The UN Regional Centre for Space Science and Technology Education for Western AsiaAmmanJordan

Personalised recommendations