Skip to main content

Advertisement

Log in

Potential for the wider application of national forest inventories to estimate the contagion metric for landscapes

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

National forest inventories (NFIs) have traditionally been designed to assess the production value of forests as well as forest biodiversity. However, in this study, the aim is to show a new application of NFIs, namely the estimation of the landscape metric contagion. This metric is commonly calculated on raster-based land cover/use maps. In this study, a sample-based dataset from the Swedish NFI was used. The estimated contagion metric is based on a distance-dependent function so that the value of the metric is small for longer distances, whereas the corresponding estimated variance is large for longer distances. With this procedure, comparisons can be made for different landscapes at a given time and or to compare any given landscape over time. The main advantages are that the approach can be applied where raster-based land cover/use maps of the landscape are not available and that the data obtained from NFIs (e.g., land cover type) typically are of high quality in comparison with remotely sensed data due to being based on direct observation in the field survey. The procedure applied here accommodates both the patch-mosaic and the gradient-based model approach to landscape structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Axelsson, A. L.,G. Ståhl,U. Södererg,H. Peterson,J. Fridman & A. Lundström. (2009). Development of Sweden’s National Forest Inventory. In National forest inventories: Pathways for common reporting, eds. E. Tomppo, T. Gschwantner, M. Lawrence & R. McRoberts.

  • Carpenter, S. R., DeFries, R., Dietz, T., Mooney, H. A., Polasky, S., Reid, W. V., & Scholes, R. J. (2006). Millennium ecosystem assessment: research needs. Ecology, 314, 257–258.

    CAS  Google Scholar 

  • Chirici, G., McRoberts, R. E., Winter, S., Bertini, R., Brändli, U.-B., Alberdi Asensio, I., Bastrup-Birk, A., Rondeux, J., Barsoum, N., & Marchetti, M. (2012). National forest inventory contributions to forest biodiversity monitoring. Forest Science, 58, 257–268.

    Article  Google Scholar 

  • Corona, P., & Marchetti, M. (2007). Outlining multi-purpose forest inventories to assess the ecosystem approach in forestry. Plant Biosystems, 141, 243–251.

    Article  Google Scholar 

  • Corona, P., Chirici, G., & Travaglini, D. (2004). Forest ecotone survey by line intersect sampling. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 34, 1776–1783. doi:10.1139/X04-045.

    Article  Google Scholar 

  • Corona, P., Chirici, G., McRoberts, E. R., Winter, S., & Barbati, A. (2011). Contribution of large-scale forest inventories to biodiversity assessment and monitoring. Forest Ecology and Management, 262, 2061–2069.

    Article  Google Scholar 

  • Dramstad, W. E., Fjellstad, W. J., Strand, G. H., Mathiesen, H. F., Engan, G., & Stokland, J. N. (2002). Development and implementation of the Norwegian monitoring programme for agricultural landscapes. Journal of Environmental Management, 64, 49–63.

    Article  CAS  Google Scholar 

  • Esseen, P. A., Jansson, K. U., & Nilsson, M. (2006). Forest edge quantification by line intersect sampling in aerial photographs. Forest Ecology and Management, 230, 32–42.

    Article  Google Scholar 

  • FAO. (2007). State of the World’s Forests 2007 In Food and Agriculture Organization (FAO), 157pp. Rome.

  • Forman, R. T. T. (1995). Land mosaic: the ecology of landscapes and regions. Cambridge: Cambridge University Press.

    Google Scholar 

  • Haila, Y. (2002). A conceptual genealogy of fragmentation research: from island biogeography to landscape ecology. Ecological Applications, 12, 321–334.

    Google Scholar 

  • Hanski, I. (2005). Landscape fragmentation, biodiversity loss and the societal response—the long term consequences of our use of natural resources may be surprising and unpleasant. Embo Reports, 6, 388–392.

    Article  CAS  Google Scholar 

  • Hassett, E. M., S. V. Stehman & J. D. Wickham (2011). Estimating landscape pattern metrics from a sample of land cover. Landscape Ecology, 1-17. doi:10.1007/s10980-011-9657-4.

  • Hunsaker, C. T., O’Neill, R. V., Jackson, B. L., Timmins, S. P., Levine, D. A., & Norton, D. J. (1994). Sampling to characterize landscape pattern. Landscape Ecology, 9, 207–226.

    Article  Google Scholar 

  • Ji, W., Ma, J., Twibell, R. W., & Underhill, K. (2006). Characterizing urban sprawl using multi-stage remote sensing images and landscape metrics. Computers, Environment and Urban Systems, 30, 861–879.

    Article  Google Scholar 

  • Kleinn, C. (2000). Estimating metrics of forest spatial pattern from large area forest inventory cluster samples. Forest Science, 46, 548–557.

    Google Scholar 

  • Kleinn, C. & B. Traub. (2003). Describing landscape pattern by sampling methods. In Advances in forest inventory for sustainable forest management and biodiversity monitoring, eds. P. Corona, M. Köhl & M. Marchetti, 175-189.

  • Kleinn, C., Kändler, G., & Schnell, S. (2011). Estimating forest edge length from forest inventory sample data. Canadian Journal of Forest Research, 41, 1–10.

    Article  Google Scholar 

  • Li, H., & Reynolds, J. (1993). A new contagion index to quantify spatial patterns of landscapes. Landscape Ecology, 8, 155–162.

    Article  Google Scholar 

  • Li, X. Z., He, H. S., Bu, R. C., Wen, Q. C., Chang, Y., Hu, Y. M., & Li, Y. H. (2005). The adequacy of different landscape metrics for various landscape patterns. Pattern Recognition, 38, 2626–2638.

    Article  Google Scholar 

  • McGarigal, K., & Cushman, S. A. (2005). The gradient concept of landscape structure. In J. Wiens & M. Moss (Eds.), Issues and perspectives in landscape ecology. Cambridge: Cambrideg University press.

    Google Scholar 

  • McGarigal, K., S. A. Cushman, M. C. Neel & E. Ene (1995). FRAGSTATS: spatial pattern analysis program for categorical maps, version 4.0.

  • Morgan, J., Gergel, S., & Coops, N. (2010). Aerial photography: a rapidly evolving tool for ecological management. BioScience, 60, 47–59.

  • Pyke, C. (2004). Habitat loss confounds climate change impacts. Frontiers in Ecology and the Environment, 2, 178–182.

    Article  Google Scholar 

  • Ramezani, H., & Holm, S. (2011). Sample based estimation of landscape metrics: accuracy of line intersect sampling for estimating edge density and Shannon’s diversity. Environmental and Ecological Statistics, 18, 109–130. doi:10.1007/s10651-009-0123-2.

    Article  Google Scholar 

  • Ramezani, H., & Holm, S. (2012). A distance dependent contagion functions for vector-based data. Environmental and Ecological Statistics, 19, 161–181. doi:10.1007/s10651-011-0180-1.

    Google Scholar 

  • Ramezani, H., & Holm, S. (2014). Estimating a distance dependent contagion function using point sample data. Environmental and Ecological Statistics, 21, 61–82.

    Article  Google Scholar 

  • Ramezani, H., Holm, S., Allard, A., & Ståhl, G. (2010). Monitoring landscape metrics by point sampling: accuracy in estimating Shannon’s diversity and edge density. Environmental Monitoring and Assessment, 164, 403–421. doi:10.1007/s10661-009-0902-0.

    Article  CAS  Google Scholar 

  • Ramezani, H., Holm, S., Allard, A., & Ståhl, G. (2013). A review of sampling-based approaches for estimating landscape metrics Norsk Geografisk Tidsskrift—Norwegian. Journal of Geography, 67(2), 61–71.

    Google Scholar 

  • Ricotta, C., Corona, P., & Marchetti, M. (2003). Beware of contagion. Landscape and Urban Planning, 62, 173–177.

    Article  Google Scholar 

  • Riitters, K. H., Wickham, J. D., & Coulston, J. W. (2004). A preliminary assessment of Montreal process indicators of forest fragmentation for the United States. Environmental Monitoring and Assessment, 91, 257–276.

    Article  Google Scholar 

  • Ståhl, G., Allard, A., Esseen, P.-A., Glimskär, A., Ringvall, A., Svensson, J., Sture Sundquist, S., Christensen, P., Gallegos Torell, Å., Högström, M., Lagerqvist, K., Marklund, L., Nilsson, B., & Inghe, O. (2011). National Inventory of Landscapes in Sweden (NILS)—scope, design, and experiences from establishing a multi-scale biodiversity monitoring system. Environmental Monitoring and Assessment, 173, 579–595.

    Article  Google Scholar 

  • Thompson, S. K. (2002). Sampling. New York: Wiley.

    Google Scholar 

  • Tomppo, E., Gschwantner, T., Lawrence, M., & McRoberts, R. E. (2009). National forest inventories.

    Google Scholar 

  • Traub, B., & Kleinn, C. (1999). Measuring fragmentation and structural diversity. Forstwissenschaftliches Centralblatt, 118, 39–50.

    Article  Google Scholar 

  • Wu, J., & Hobbs, R. J. (2007). Key topics in landscape ecology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Wulder, M.,J. White & N. C. Coops (2011). Fragmentation regimes of Canada’s forests. The Canadian Geographer, 1–13

Download references

Acknowledgments

The data were kindly provided by Riksskogstaxeringen (the Swedish national forest inventory, NFI), the Department of Forest Resources Management (SLU). We do express our thanks to the responsible department. We are grateful to Dr. Heather Reese for improving the language and Sören Holm and anonymous reviewers for providing helpful comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Ramezani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezani, H., Ramezani, F. Potential for the wider application of national forest inventories to estimate the contagion metric for landscapes. Environ Monit Assess 187, 116 (2015). https://doi.org/10.1007/s10661-015-4283-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4283-2

Keywords

Navigation