Advertisement

Mutagenic and genotoxic effects of Guelma’s urban wastewater, Algeria

  • Mouna Tabet
  • Ahlem Abda
  • Djamel E. Benouareth
  • Recep Liman
  • Muhsin KonukEmail author
  • Messaouda Khallef
  • Ali Taher
Article

Abstract

Assessment of water pollution and its effect upon river biotic communities and human health is indispensable to develop control and management strategies. In this study, the mutagenicity and genotoxicity of urban wastewater of the city of Guelma in Algeria were examined between April 2012 and April 2013. For this, two biological tests, namely Amesand chromosomal aberrations (CA) test in Allium cepa root tips were employed on the samples collected from five different sampling stages (S1–S5). In Ames test, two strains of Salmonella typhimurium TA98 and TA100 with or without metabolic activation (S9-mix) were used. All water samples were found to be mutagenic to S. typhimurium TA98 with or without S9-mix. A significant decrease in mitotic index (MI) was observed with a decrease in the percentage of cells in the prophase and an increase in the telophase. Main aberrations observed were anaphase bridges, disturbed anaphase-telophase cells, vagrants and stickiness in anaphase-telophase cells. All treatments of wastewater in April 2012, at S5 in July 2012, at S1 and S5 in November 2012, at S5 in February 2013, and at S1 in April 2013 induced CA when compared to the negative control. Some physicochemical parameters and heavy metals (Cd, Pb, and Cu) were also recorded in the samples examined.

Keywords

Mutagenicity Genotoxicity Urban wastewater Ames test Allium test 

Notes

Acknowledgments

Special thanks due to wastewater treatment plant workers of the city of Guelma and to Gueroui Yacine, for his help in the realization of the map figure.

References

  1. Abdel-Massih, R. M., Melki, P. N., Afif, C., & Daoud, Z. (2013). Detection of genotoxicity in hospital wastewater of a developing country using SOS chromotest and Ames fluctuation test. Journal of Environmental Engineering & Ecological Science. doi: 10.7243/2050-1323-2-4.Google Scholar
  2. Amir, S. (2005). Contribution A La Valorisation De Boues De Stations D’epuration Par Compostage: Devenir Des Micropolluants Metalliques Et Organiques Et Bilan Humique Du Compost. Thèse de Doctorat, Institut National Polytechnique De Toulouse.Google Scholar
  3. Barbosa, J. S., Cabral, T. M., Ferreira, D. N., Agnez-Lima, L. F., & Batistuzzode, S. R. (2010). Genotoxicity assessment in aquatic environment impacted by the presence of heavy metals. Ecotoxicology and Environmental Safety, 73, 320–325.CrossRefGoogle Scholar
  4. BenSalem, Z., Capelli, N., Grisey, E., Baurand, P. E., Ayadi, H., & Aleya, L. (2014). First evidence of fish genotoxicity induced by heavy metals from landfill leachates: the advantage of using the RAPD-PCR technique. Ecotoxicology and Environmental Safety, 101, 90–96.CrossRefGoogle Scholar
  5. Borboa, L., & De La Torre, C. (1996). The genotoxicity of Zn (II) and Cd (II) in Allium cepa root meristematic cells. New Phytologist, 134, 481–486.CrossRefGoogle Scholar
  6. Castaňo, A., & Becerril, C. (2004). In vitro assessment of DNA damage after short-and long term exposure to benzo (a) pyrene using RAPD and the RTG-2 fish cell line. Mutation Research, 552, 141–151.CrossRefGoogle Scholar
  7. Chandra, S., Chauhan, L. K., Murthy, R. C., Saxena, P. N., Pande, P. N., & Gupta, S. K. (2005). Comparative biomonitoring of leachates from hazardous solid waste of two industries using the Allium test. Science of the Total Environment, 347, 46–52.CrossRefGoogle Scholar
  8. Ciğerci, İ. H., Liman, R., Özgül, E., & Konuk, M. (2013). Genotoxicity of indium tin oxide by Allium and Comet tests. Cytotechnology. doi: 10.1007/s10616-013-9673-0.Google Scholar
  9. Djabri, L., Hani, A., Laouar, R., Mania, J., Mudry, J., & Louhi, A. (2003). Potential pollution of groundwater in the valley of the Seybouse River, north-eastern Algeria. Environmental Geology, 44, 738–744.CrossRefGoogle Scholar
  10. El-Ghamery, A. A., El-Nahas, A. I., & Mansour, M. M. (2000). The action of atrazine herbicide as an indicator of cell division on chromosomes and nucleic acid content in root meristems of Allium cepa and Viciafaba. Cytologia, 65, 277–287.CrossRefGoogle Scholar
  11. El-Shahaby, O. A., Abdel Migid, H. M., Soliman, M. I., & Mashaly, I. A. (2003). Genotoxicity screening for industrial wastewater using the Allium cepa chromosome aberration assay. Pakistan Journal of Biological Sciences, 6, 23–28.CrossRefGoogle Scholar
  12. Evseeva, T. I., Geraskin, S. A., & Shuktomova. (2003). Genotoxicity and toxicity assay of water sampled from a radium production industry storage cell territory by means of Allium-test. Journal of Environmental Radioactivity, 68, 235–248.CrossRefGoogle Scholar
  13. Fernandes, T. C. C., Mazzeo, D. E. C., & Marin-Morales, M. A. (2007). Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to trifluralin herbicide. Pesticide Biochemistry and Physiology, 88, 252–259.CrossRefGoogle Scholar
  14. Fiskesjo, G. (1981). Allium test on copper in drinking water. Vatten, 37, 232–240.Google Scholar
  15. Fiskesjo, G. (1985). The Allium test as a standard in environmental monitoring. Hereditas, 102, 99–112.CrossRefGoogle Scholar
  16. Fiskesjo, G. (1988). The Allium test an alternative in environmental studies: the relative toxicity of metal ions. Mutation Research, 197, 243–260.CrossRefGoogle Scholar
  17. Foltete, A.S. (2010). Effets génotoxiques et systèmes de détoxication chez Vicia faba (Fabaceae) dans le cadre de l’évaluation des sols pollués. Thèse de Doctorat, Université Paul Verlaine, Metz.Google Scholar
  18. Gana, J. M., Ordonez, R., Zampini, C., Hidalgo, M., Meoni, S., & Isla, M. I. (2008). Industrial effluents and surface waters genotoxicity and mutagenicity evaluation of a river of Tucuman, Argentina. Journal of Hazardous Material, 155, 403–406.CrossRefGoogle Scholar
  19. Grover, I. S., & Kaur, S. (1999). Genotoxicity of wastewater samples from sewage and industrial effluent detected by the Allium root anaphase aberration and micronucleus assay. Mutation Research, 426, 183–188.CrossRefGoogle Scholar
  20. Gupta, P., Mathur, N., Bhatnagar, P., Nagar, P., & Srivastava, S. (2009). Genotoxicity evaluation of hospital wastewaters. Ecotoxicology and Environmental Safety, 72, 1925–1932.CrossRefGoogle Scholar
  21. Harguinteguy, C. A., Cirelli, A. F., & Pignata, M. L. (2014). Heavy metal accumulation in leaves of aquatic plant Stuckeniafiliformis and its relationship with sediment and water in the Suquíariver (Argentina). Microchemical Journal, 114, 111–118.CrossRefGoogle Scholar
  22. Hartmann, A., Alder, A. C., Koller, T., & Widmer, R. M. (1998). Identification of fluoroquinolones antibiotics as the main source of umuC genotoxicity in native hospital wastewater. Environmental Toxicology and Chemistry, 17, 377–382.CrossRefGoogle Scholar
  23. Hartmann, A., Golet, E. M., Gartiser, S., Alder, A. C., Koller, T., & Widmer, R. M. (1999). Primary DNA damage but not mutagenicity correlates with ciprofloxacin concentrations in German hospital wastewaters. Archives of Environmental Contamination and Toxicology, 36, 115–119.CrossRefGoogle Scholar
  24. Hassoune, E. M., Bouzidi, A., Koulali, Y., & Hadarbach, D. (2006). Effects of domestic and industrial effluent discharges on groundwater quality in the North of the City of Settat (Morocco). Life Sciences, 28, 61–71.Google Scholar
  25. Hoshina, M. M., & Marin-Morales, M. A. (2009). Micronucleus and chromosome aberrations induced in onion (Allium cepa) by a petroleum refinery effluent and by river water that receives this effluent. Ecotoxicology and Environmental Safety, 72, 2090–2095.CrossRefGoogle Scholar
  26. Jolibois, B., & Guerbet, M. (2005). Evaluation of industrial, hospital and domestic wastewater genotoxicity with the Salmonella fluctuation test and the SOS Chromotest. Mutation Research, 565, 151–162.CrossRefGoogle Scholar
  27. Jolibois, B., Guerbet, M., & Vassal, S. (2003). Detection of hospital wastewater genotoxicity with the SOS Chromotest and Ames fluctuation test. Chemosphere, 51, 539–543.CrossRefGoogle Scholar
  28. Jolibois, B., Guerbet, M., Goullé, J. P., & Lacroix, C. (2009). Effectiveness of two treatment plants to remove the genotoxicity of urban wastewater. Hospital Technology, 715, 63–68.Google Scholar
  29. Khalid, E.K., Driss, B., Khadija, E.K., Abedelouahed, K., Mohamed, C., & Rachid, B. (2011). Caractérisation physico-chimique des eaux usées urbaines de la ville de MechraaBelksiri (Gharb, Maroc). La science en liberté, Volume 3, N ° 110205, ISSN 2111-4706. Google Scholar
  30. Knasmuller, S., Gottmann, E., Steinkellner, H., Fomin, A., Pickl, C., Paschke, A., God, R., & Kundi, M. (1998). Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays. Mutation Research, 420, 37–48.CrossRefGoogle Scholar
  31. Leme, M. D., & Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: a review on its application. Mutation Research, 682, 71–81.CrossRefGoogle Scholar
  32. Liman, R., Akyıl, D., Eren, Y., & Konuk, M. (2010). Testing of the mutagenicity and genotoxicity of metolcarb by using both Ames/Salmonella and Allium test. Chemosphere, 80, 1056–1061.CrossRefGoogle Scholar
  33. Luo, L. Z., Werner, K. M., Gollin, S. M., & Saunders, W. S. (2004). Cigarette smoke induces anaphase bridges and genomic imbalances in normal cells. Mutation Research, 554, 375–385.CrossRefGoogle Scholar
  34. Lupi, S., Marconi, S., Paiaro, E., Fochesato, A., & Gregorio, P. (2009). Mutagenicity evaluation with Ames test of hydro-alcoholic solution of terpenes. Journal of Preventive Medicine and Hygiene, 50, 170–174.Google Scholar
  35. Ma, T. H., Xu, Z., Xu, C., McConnell, H., Rabago, E. V., Arreola, G. A., & Zhang, H. (1995). The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants. Mutation Research, 334, 185–195.CrossRefGoogle Scholar
  36. Maron, D. M., & Ames, B. N. (1983). Revised methods for the Salmonella mutagenicity test. Mutation Research, 113, 173–215.CrossRefGoogle Scholar
  37. Michael, C., Ukaegbu, & Peter, G. C. O. (2009). The genotoxic effect of sewage effluent on Allium cepa. Report and Opinion, 1, 36–41.Google Scholar
  38. Mico, C., Recatala, L., Peris, M., & Sanchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65, 863–872.CrossRefGoogle Scholar
  39. Monarca, S., Feretti, D., Collivignarelli, C., Guzzella, L., Zerbini, I., Bertanza, G., & Pedrazzani, R. (2000). The influence of different disinfectants on mutagenicity and toxicity of urban wastewater. Water Research, 34(17), 4261–4269.CrossRefGoogle Scholar
  40. Monteirono, M. S., Rodriguez, E., Loureiro, J., Mann, R. M., Soares, A. M. V. M., & Santos, C. (2010). Flow cytometric assessment of Cd genotoxicity in three plants with different metal accumulation and detoxification capacities. Ecotoxicology and Environmental Safety, 73, 1231–1237.CrossRefGoogle Scholar
  41. Mortelmans, K., & Zeiger, E. (2000). The Ames Salmonella/microsome mutagenicity assay. Mutation Research, 445, 29–60.CrossRefGoogle Scholar
  42. Ono, Y., Somiya, I., Kawaguchi, T., & Mohri, S. (1996). Evaluation of toxic substances in effluents from a wastewater treatment plant. Desalination, 106, 255–261.CrossRefGoogle Scholar
  43. Owens, J. E., & Niemeyer, E. D. (2006). Analysis of chemical contamination within a canal in a Mexican border colonia. Environmental Pollution, 140, 506–515.CrossRefGoogle Scholar
  44. Özkara, A., Akyıl, D., Erdoğmuş, S. F., & Konuk, M. (2011). Evaluation of germination, root growth and cytological effects of wastewater of sugar factory (Afyonkarahisar) using Hordeumvulgare bioassays. Environmental Monitoring and Assessment, 183, 517–524.CrossRefGoogle Scholar
  45. Radic, S., Stipanicev, D., Vujcic, V., Rajcic, M. M., Sirac, S., & Pevalek-Kozlina, B. (2010). The evaluation of surface and wastewater genotoxicity using the Allium cepa test. Science of the Total Environment, 408, 1228–1233.CrossRefGoogle Scholar
  46. Rank, J., & Nielsen, M. H. (1998). Genotoxicity testing of wastewater sludge using the Allium cepa anaphase–telophase chromosome aberration assay. Mutation Research, 418, 113–119.CrossRefGoogle Scholar
  47. Reimann, O. D. (1989). Heavy metals in domestic refuse and their distribution in incinerator residues. Waste Management & Research, 7, 57–62.CrossRefGoogle Scholar
  48. Saxena, P. N., Chauhan, L. K. S., & Gupta, S. K. (2005). Cytogenetic effects of commercial formulation of cypermethrin in root meristem cells of Allium sativum: spectroscopic basis of chromosome damage. Toxicology, 216, 244–252.CrossRefGoogle Scholar
  49. Smaka-Kincl, V., Stegnar, P., Lovka, M., & Toman, M. J. (1996). The evaluation of waste, surface and ground water quality using the Allium test procedure. Mutation Research, 368, 171–179.CrossRefGoogle Scholar
  50. Stahl, R. G., Jr. (1991). The genetic toxicology of organic compounds in natural water and wastewater. Ecotoxicoly and Environmental Safety, 22, 94–125.CrossRefGoogle Scholar
  51. Tabrez, S., & Ahmad, M. (2011). Oxidative stress-mediated genotoxicity of wastewaters collected from two different stations in northern India. Mutation Research, 726, 15–20.CrossRefGoogle Scholar
  52. Tipirdamaz, R., Gömürgen, A. N., Olankaya, D., & Doğan, M. (2003). Determination of toxicity of pulp-MIII effluents by using Allium test. Tarım Bilimleri Dergisi, 9(1), 93–97.Google Scholar
  53. Unyayar, S., Celik, A., Cekic, F. O., & Gozel, A. (2006). Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Viciafaba. Mutagenesis, 21, 77–81.CrossRefGoogle Scholar
  54. Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160, 1–40.CrossRefGoogle Scholar
  55. Vedacovic, Z., Tomic, M., & Papes, D. (1993). Toxicity of waste drilling fluids in modified Allium test. Water, Air, and Soil Pollution, 69, 413–423.CrossRefGoogle Scholar
  56. Vega, M. M., Fernandez, T. B., Tarazona, J. V., & Castano, A. (1996). Biological and chemical tools in the toxicological risk assessment of Jarama River, Madrid, Spain. Environmental Pollution, 93, 135–139.CrossRefGoogle Scholar
  57. Ventura, L., Giovannini, A., Savio, M., Donà, M., Macovei, A., Buttafava, A., Carbonera, D., & Balestrazzi, A. (2013). Single Cell Gel Electrophoresis (Comet) assay with plants: research on DNA repair and ecogenotoxicity testing. Chemosphere, 92, 1–9.CrossRefGoogle Scholar
  58. White, P. A., & Rasmussen, J. B. (1998). The genotoxic hazards of domestic wastes in surface waters. Mutation Research, 410, 223–236.CrossRefGoogle Scholar
  59. Yıldız, M., HakkıCigerci, I., Konuk, M., Fatih Fidan, A., & Terzi, H. (2009). Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and comet assays. Chemosphere, 75, 934–938.CrossRefGoogle Scholar
  60. Zidane, F., Cheggari, K., Blais, J. F., Khlil, N., Drogui, P., & Bensaid, J. (2012). Effect of chlorination on trihalomethanes formation in feed water of Casablanca in Morocco. Journal of Materials and Environmental Science, 3, 99–108.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mouna Tabet
    • 1
  • Ahlem Abda
    • 1
  • Djamel E. Benouareth
    • 1
  • Recep Liman
    • 2
  • Muhsin Konuk
    • 3
    Email author
  • Messaouda Khallef
    • 1
  • Ali Taher
    • 4
  1. 1.Biology Department, Faculty of Natural and Life Sciences, Earth and Universe SciencesUniversity 8 Mai 1945 GuelmaGuelmaAlgeria
  2. 2.Molecular Biology and Genetics Department, Faculty of Arts and SciencesUşak UniversityUşakTurkey
  3. 3.Molecular Biology and Genetics Department, Faculty of Engineering and Natural SciencesÜsküdar UniversityIstanbulTurkey
  4. 4.Biology Department, Faculty of SciencesUniversity Badji MokhtarAnnabaAlgeria

Personalised recommendations