Skip to main content

Extrapolation of in situ data from 1-km squares to adjacent squares using remote sensed imagery and airborne lidar data for the assessment of habitat diversity and extent

Abstract

Habitat surveillance and subsequent monitoring at a national level is usually carried out by recording data from in situ sample sites located according to predefined strata. This paper describes the application of remote sensing to the extension of such field data recorded in 1-km squares to adjacent squares, in order to increase sample number without further field visits. Habitats were mapped in eight central squares in northeast Estonia in 2010 using a standardized recording procedure. Around one of the squares, a special study site was established which consisted of the central square and eight surrounding squares. A Landsat-7 Enhanced Thematic Mapper Plus (ETM+) image was used for correlation with in situ data. An airborne light detection and ranging (lidar) vegetation height map was also included in the classification. A series of tests were carried out by including the lidar data and contrasting analytical techniques, which are described in detail in the paper. Training accuracy in the central square varied from 75 to 100 %. In the extrapolation procedure to the surrounding squares, accuracy varied from 53.1 to 63.1 %, which improved by 10 % with the inclusion of lidar data. The reasons for this relatively low classification accuracy were mainly inherent variability in the spectral signatures of habitats but also differences between the dates of imagery acquisition and field sampling. Improvements could therefore be made by better synchronization of the field survey and image acquisition as well as by dividing general habitat categories (GHCs) into units which are more likely to have similar spectral signatures. However, the increase in the number of sample kilometre squares compensates for the loss of accuracy in the measurements of individual squares. The methodology can be applied in other studies as the procedures used are readily available.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Asner, P. G. (2004). Biophysical remote sensing signatures of arid and semiarid ecosystems. In S. L. Ustin (Ed.), Remote sensing for natural resource management and environmental monitoring (pp. 53–110). Hoboken: Wiley.

    Google Scholar 

  2. Baltsavias, E. P. (1999). Airborne laser scanning: basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 199–214.

    Article  Google Scholar 

  3. Baret, F., Weiss, M., Lacaze, R., Camacho, F., Makhmara, H., Pacholcyzk, P., et al. (2013). GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: principles of development and production. Remote Sensing of Environment, 137, 299–309.

    Article  Google Scholar 

  4. Bock, M., Rossner, G., Wissen, M., Remm, K., Langanke, T., Lang, S., et al. (2005). Spatial indicators for nature conservation from European to local scale. Ecological Indicators, 5, 322–338.

    Article  Google Scholar 

  5. Bunce, R. G. H., Barr, C. J., Clarke, R. T., Howard, D. C., & Lane, A. M. J. (1996). ITE Merlewood land classification of Great Britain. Journal of Biogeography, 23, 625–634.

    Article  Google Scholar 

  6. Bunce, R. G. H., Metzger, M. J., Jongman, R. H. G., Brandt, J., de Blust, G., Elena-Rossello, R., et al. (2008). A standardized procedure for surveillance and monitoring European habitats and provision of spatial data. Landscape Ecology, 23, 11–25.

    Article  Google Scholar 

  7. Bunce, R. G. H., Bogers, M. M. B., Roche, P., Walczak, M., Geijzendorffer, I. R., & Jongman, R. H. G. (2011). Manual for habitat and vegetation surveillance and monitoring: temperate, Mediterranean and desert biomes (1st ed.). Wageningen: Alterra, Alterra report 2154.

    Google Scholar 

  8. Bunce, R. G. H., Bogers, M. M. B., Evans, D., Halada, L., Jongman, R. H. G., Mücher, C. A., et al. (2013). The significance of habitats as indicators of biodiversity and their links to species. Ecological Indicators, 33, 19–25.

    Article  Google Scholar 

  9. EBONE. (2011). European Biodiversity Observation Network. Web page http://www.ebone.wur.nl/UK/Project+information+and+products/. Accessed 18 July 2014.

  10. Feranec, J., Hazeu, G., Christensen, S., & Jaffrain, G. (2007). Corine land cover change detection in Europe (case studies of the Netherlands and Slovakia). Land Use Policy, 24, 234–247.

    Article  Google Scholar 

  11. Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., et al. (2010). MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114, 168–182.

    Article  Google Scholar 

  12. Geijzendorffer, I. R., & Roche, P. K. (2013). Can biodiversity monitoring schemes provide indicators for ecosystem services? Ecological Indicators, 33, 148–157.

    Article  Google Scholar 

  13. GEO BON. (2011). Adequacy of biodiversity observation systems to support the CBD 2020 targets. Group on Earth Observations Biodiversity Observation Network. URL: http://www.earthobservations.org/documents/cop/bi_geobon/2011_cbd_adequacy_report.pdf. Accessed 20 June 2014.

  14. Haines-Young, R. H., Barr, C. J., Black, H. I. J., Briggs, D. J., Bunce, R. G. H., Clarke, R. T., et al. (2000). Accounting for nature: assessing habitats in the UK countryside. London: DETR.

    Google Scholar 

  15. Hopkinson, C., & Chasmer, L. (2009). Testing LiDAR models of fractional cover across multiple forest ecozones. Remote Sensing of Environment, 113, 275–288.

    Article  Google Scholar 

  16. Jennings, S. B., Brown, N. D., & Sheil, D. (1999). Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures. Forestry, 72, 59–73.

    Article  Google Scholar 

  17. Jongman, R. H. G. (2013). Biodiversity observation from local to global. Ecological Indicators, 33, 1–4.

    Article  Google Scholar 

  18. Jongman, R. H. G., Bunce, R. G. H., Metzger, M. J., Mücher, C. A., Howard, D. C., & Mateus, V. L. (2006). Objectives and applications of a statistical environmental stratification of Europe. Landscape Ecology, 21, 409–419.

    Article  Google Scholar 

  19. Kasischke, E. S., Goetz, S., Hansen, M. C., Ozdogan, M., Rogan, J., Ustin, S. L., et al. (2004). Temperate and boreal forests. In S. L. Ustin (Ed.), Remote sensing for natural resource management and environmental monitoring (pp. 235–23). Hoboken: Wiley.

    Google Scholar 

  20. Koetz, B., Sun, G., Morsdorf, F., Ranson, K. J., Kneubühler, M., Itten, K., et al. (2007). Fusion of imaging spectrometer and LIDAR data over combined radiative transfer models for forest canopy characterization. Remote Sensing of Environment, 106, 449–459.

    Article  Google Scholar 

  21. Korhonen, L., Korpela, I., Heiskanen, J., & Maltamo, M. (2011). Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. Remote Sensing of Environment, 115, 1065–1080.

    Article  Google Scholar 

  22. Lang, M. (2010). Estimation of crown and canopy cover from airborne lidar data. Forestry Studies, 52, 5–17.

    Article  Google Scholar 

  23. Lawrence, M., McRoberts, R. E., Tomppo, E., Gschwantner, T., & Gabler, K. (2010). Comparison of national forest inventories. In E. Tomppo, T. Gschwantner, M. Lawrence, & R. E. McRoberts (Eds.), National forest inventories (pp. 19–32). Heidelberg: Springer.

    Chapter  Google Scholar 

  24. Levin, N., Shmida, A., Levanoni, O., Tamari, H., & Kark, S. (2007). Predicting mountain plant richness and rarity from space using satellite-derived vegetation indicies. Diversity and Distribution, 13, 692–703.

    Article  Google Scholar 

  25. Liang, S. (2004). Quantitative remote sensing of land surfaces. Hoboken: Wiley.

    Google Scholar 

  26. Lucas, R., Medcalf, K., Brown, A., Bunting, P., Breyer, J., Clewley, D., et al. (2011). Updating the Phase 1 habitat map of Wales, UK, using satellite sensor data. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 81–102.

    Article  Google Scholar 

  27. McGaughey, R. J., (2010). FUSION/LDV: Software for LIDAR data analysis and visualization. July 2010 – FUSION Version 2.90. United States Department of Agriculture, Forest Service Pacific North-West Research Station.

  28. McRoberts, R. E., & Tomppo, E. (2007). Remote sensing support for national forest inventories. Remote Sensing of Environment, 110, 412–419.

    Article  Google Scholar 

  29. Mücher, C. A., Kooistra, L., Vermeulen, M., Borre, J. V., Haest, B., & Haveman, R. (2013). Quantifying structure of Natura 2000 heathland habitats using spectral mixture analysis and segmentation techniques on hyperspectral imagery. Ecological Indicators, 33, 71–81.

    Article  Google Scholar 

  30. Næsset, E., Gobakken, T., Holmgren, J., Hyyppä, H., Hyyppä, J., Maltamo, M., et al. (2004). Laser scanning of forest resources: the Nordic experience. Scandinavian Journal of Forest Research, 19, 482–499.

    Article  Google Scholar 

  31. Nagendra, H., Blonda, P., & Jongman, R. H. G. (2012). The biodiversity multi-source monitoring system: from space to species (BIOSOS) project. Newsletter of the global land project, 9, 17–19.

    Google Scholar 

  32. Nagendra, H., Lucas, R., Honrado, J. P., Jongman, R. H. G., Tarantino, C., Adamo, M., et al. (2013). Remote sensing for conservation monitoring: assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecological Indicators, 33, 45–59.

    Article  Google Scholar 

  33. Ortega, M., Guerra, C., Honrado, J. P., Metzger, M. J., Bunce, R. G. H., & Jongman, R. H. G. (2013). Surveillance of habitats and plant diversity indicators across a regional gradient in the Iberian Peninsula. Ecological Indicators, 33, 36–44.

    Article  Google Scholar 

  34. Pontius, R. G. (2000). Quantification error versus location error in comparison of categorical maps. Photogrammetric Engineering and Remote Sensing, 66, 1011–1016.

    Google Scholar 

  35. Raunkiaer, C. (1934). The life forms of plants and statistical plant geography, being the collected papers of C. Raunkiaer. Oxford: Clarendon.

    Google Scholar 

  36. Rautiainen, M., Stenberg, P., & Nilson, T. (2005). Estimating canopy cover in Scots pine stands. Silva Fennica, 39, 137–142.

    Article  Google Scholar 

  37. Scholes, R. J., Reyers, B., Biggs, R., Spierenburg, M. J., & Duriappah, A. (2013). Multi-scale and cross-scale assessments of social-ecological systems and their ecosystem services. Current Opinion in Environmental Sustainability, 5, 16–25.

    Article  Google Scholar 

  38. Ståhl, G., Allard, A., Esseen, P.-A., Glimskär, A., Ringvall, A., Svensson, J., et al. (2011). National inventory of landscapes in Sweden (NILS) - scope, design, and experiences from establishing a multi-scale biodiversity monitoring system. Environmental Monitoring and Assessment, 173, 579–595.

    Article  Google Scholar 

  39. Straatsma, M. W., & Middelkoop, H. (2006). Airborne laser scanning as a tool for lowland floodplain vegetation monitoring. Hydrobiologia, 565, 87–103.

    Article  Google Scholar 

  40. Tomppo, E., Schadauer, K., McRoberts, R. E., Gschwantner, T., Gabler, K., & Ståhl, G. (2010). History of NFIs. In E. Tomppo, T. Gschwantner, M. Lawrence, & R. E. McRoberts (Eds.), National forest inventories (pp. 1–2). Heidelberg: Springer.

    Chapter  Google Scholar 

  41. Traat, I., & Inno, J. (1997). Statistical sampling [Tõenäosuslik valikuuring]. Tartu: Tartu Ülikooli Kirjastus. In Estonian.

    Google Scholar 

  42. Tudor, G. J., Shewry, M. C., Mackey, E. C., Elston, D.A., Underwood, F. M. (1999). Land cover change in Scotland: The methodology of the National Countryside Monitoring Scheme. Scottish Natural Heritage Research, Survey and Monitoring Report No 127.

  43. Uuemaa, E., Roosaare, J., & Mander, Ü. (2005). Scale dependence of landscape metrics and their indicatory value for nutrient and organic matter losses from catchments. Ecological Indicators, 5, 350–369.

    Article  Google Scholar 

Download references

Acknowledgments

Fieldwork was supported by the EU FP7 project European Biodiversity Observation Network (EBONE). The authors would like to thank the Estonian Land Board for the airborne lidar data and USGS for the Landsat-7 ETM+ data. This study is related to Estonian Science foundation grant ETF8290 and state target financing grants SF0180009Bs11 and SF0170014s08. Data analysis and manuscript revision was partly supported by the Estonian Research Council grant IUT21-1 and by the European Regional Development Fund (CECT) project ERMAS. The authors also wish to thank two anonymous reviewers for valuable comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Lang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lang, M., Vain, A., Bunce, R.G.H. et al. Extrapolation of in situ data from 1-km squares to adjacent squares using remote sensed imagery and airborne lidar data for the assessment of habitat diversity and extent. Environ Monit Assess 187, 76 (2015). https://doi.org/10.1007/s10661-015-4270-7

Download citation

Keywords

  • Plant life forms
  • General habitat categories
  • Lidar
  • Landsat-7 Enhanced Thematic Mapper Plus
  • Iterative self organising clustering
  • Maximum likelihood classification