Skip to main content
Log in

Identifying best methods for routine ELISA detection of microcystin in seafood

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Ingestion of water contaminated with the cyanotoxin, microcystin (MC), can pose serious health risks to humans. MC is also known to accumulate in seafood; however, this exposure pathway is much less understood. A fundamental element of this uncertainty is related to analytical difficulties. Commercially available enzyme-linked immunosorbent assays (ELISAs) offer one of the best options for routine MC detection, but methods of detecting MC in tissue are far from standardized. We spiked freshwater finfish and marine mussel tissues with MC, then compared recovery rates using four different preparation protocols and two ELISA types (polyclonal anti-MC-ADDA/direct monoclonal (DM)). Preparation protocol, type of ELISA, and seafood tissue variety significantly affected MC detection. This is the first known study to use DM ELISA for tissue analyses, and our findings demonstrate that DM ELISA combined with a short solvent extraction results in fewer false positives than other commonly used methods. This method can be used for rapid and reliable MC detection in seafood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamovsky, O., Kopp, R., Hilscherová, K., Babica, P., Palíková, M., Pašková, V., Navrátil, S., Maršálek, B., & Bláha, L. (2007). Microcystin kinetics (bioaccumulation and elimination) and biochemical responses in common carp (Cyrpinus carpio) and silver carp (Hypophthalmichthys molitrix) exposed to toxic cyanobacterial blooms. 2007. Environmental Toxicology, 26(12), 2687–2693.

    Article  CAS  Google Scholar 

  • Babica, P., Kohoutek, J., Bláha, L., Adamovský, O., & Maršálek, B. (2006). Evaluation of extraction approaches linked to ELISA and HPLC for analyses of microcystin-LR, -RR and -YR in freshwater sediments with different organic material contents. Analytical and Bioanalytical Chemistry, 385, 1545–1551.

    Article  CAS  Google Scholar 

  • Berry, J. P., Lee, E., Walton, K., Wilson, A. E., & Bernal-Brooks, F. (2011). Bioaccumulation of microcystins by fish associated with a persistent cyanobacterial bloom in Lago de Patcuro (Michoacan, Mexico). Environmental Toxicology and Chemistry, 30(7), 1621–1628.

    Article  CAS  Google Scholar 

  • Chorus, I., & Bartram, J. (1999). Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. London: E & F Spon.

    Book  Google Scholar 

  • Crawley, M. J. (2005). An introduction to statistics in R. New York: Wiley.

    Google Scholar 

  • Deblois, C. P., Aranda-Rodriguez, R., Giani, A., & Bird, D. F. (2008). Microcystin accumulation in liver and muscle of tilapia in two large Brazilian hydroelectric reservoirs. Toxicon, 51, 435–448.

    Article  CAS  Google Scholar 

  • Dörr, F. A., Pinto, E., Soares, R. M., & Azevedo, S. M. F. O. (2010). Microcystins in South American aquatic ecosystems: occurrence, toxicity and toxicological assays. Toxicon, 56, 1247–1256.

    Article  Google Scholar 

  • Ernst, B., Dietz, L., Hoeger, S. J., & Dietrich, D. R. (2005). Recovery of MC-LR in fish liver tissue. Environmental Toxicology, 20(4), 449–458.

    Article  CAS  Google Scholar 

  • Fisher, W. J., Garthwaite, I., Miles, C. O., Ross, K. M., Aggen, J. B., Chamberlin, A. R., Towers, N. R., & Dietrich, D. R. (2001). Cogener-independent immunoassay for microcystins and nodularins. Environmental Science and Technology, 35, 4849–4856.

    Article  Google Scholar 

  • Geis-Asteggiante, L., Lehotay, S. J., Fortis, L. L., Paoli, G., Wijey, C., & Heinzen, H. (2011). Development and validation of a rapid method for microcystin in fish and comparing LC-MS/MS results with ELISA. Analytical and Bioanalytical Chemistry, 401, 2617–2630.

    Article  CAS  Google Scholar 

  • Gkelis, S., Lanaras, T., & Sivonen, K. (2006). The presence of MCs and other cyanobacterial bioactive peptides in aquatic fauna collected from Greek freshwaters. Aquatic Toxicology, 78, 32–41.

    Article  CAS  Google Scholar 

  • Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50(3), 346–363.

    Article  Google Scholar 

  • Kagalou, I., Papadimitriou, T., Bacopoulos, V., & Lenordos, I. (2008). Assessment of microcystins in lake water and the omnivourous fish (Carassius gibelio, Bloch) in Lake Pamvotis (Greece) containing dense cyanobacterial bloom. Environmental Monitoring and Assessment, 137, 185–195.

    Article  CAS  Google Scholar 

  • Kankaanpää, H. T., Holliday, J., Schröder, H., Goddard, T. J., von Fister, R., & Carmichael, W. W. (2005). Cyanobacteria and prawn farming in northern New South Wales Australia-a case study on cyanobacteria diversity and hepatotoxin bioaccumulation. Toxicology and Applied Pharmacology, 203, 243–256.

    Article  Google Scholar 

  • Kankaanpää, H. T., Leiniö, S., Olin, M., Sjövall, O., Meriluoto, J., & Lehtonen, K. K. (2007). Accumulation and depuration of cyanobacterial toxin nodularin and biomarker responses in the mussel Mytilus edulis. Chemosphere, 68, 1210–1217.

    Article  Google Scholar 

  • Kohoutek, J., Adamovský, O., Oravec, M., Simek, Z., Paliková, M., Kopp, R., & Bláha, L. (2010). LC-MS analyses of microcystins in fish tissues overestimate toxin levels-critical comparison with LC-MS/MS. Analytical and Bioanalytical Chemistry, 398, 1231–1237.

    Article  CAS  Google Scholar 

  • Kutner, M. H., Nachtsheim, C. J., & Neter, J. (2004). Applied linear regression models. New York: McGraw-Hill/Irwin.

    Google Scholar 

  • Magalhães, V. F., Soares, R. M., Azevedo, S. M. F. O. (2001). Microcystin contamination in fish from the Jacarepagua Lagoon (Rio de Janeiro,Brazil): ecological implication and human health risk. Toxicon, 39, 1077–1085.

  • Malbrouck, C., Trausch, G., Devos, P., & Kestemont, P. (2003). Hepatic accumulation and effects of MC-LR on juvenile goldfish Carassius auratus L. Comparative Biochemistry and Physiology, 135(C), 39–48.

    Google Scholar 

  • McCullagh, P., & Nelder, J. A. (1989). Generalized linear models. London: Chapman and Hall.

    Book  Google Scholar 

  • McEliney, J., & Lawton, L. A. (2004). Detection of the cyanobacterial hepatotoxins microcystins. Toxicology and Applied Pharmacology, 203, 219–230.

    Article  Google Scholar 

  • Mekebri, A., Blondina, G. J., & Crane, D. B. (2009). Method validation of microcystins in water and tissue by enhanced liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 1216(15), 3147–3155.

    Article  CAS  Google Scholar 

  • Meriluoto, J. A. O., Spoof, L. E. M. (2007) Cyanotoxins: sampling, sample processing and toxin uptake. In H.K. Hudnel (Ed.) Cyanobacterial harmful Algal Blooms State of the Science and Research Needs (pp.483-499). New York: Springer Press.

  • Meriluoto, J. A. O., & Spoof, L. E. M. (2008). Cyanotoxins: sampling, sample processing and toxin uptake. In H. K. Hudnel (Ed.), Cyanobacterial harmful algal blooms state of the science and research needs, vol. 619, chapter 21 (pp. 317–381). New York: Springer Press.

    Google Scholar 

  • Metcalf, J. S., Beattie, K. A., Pflugmacher, S., Codd, G. A., (2000). Immuno-crossreactivity and toxicity assessment of conjugation products of the cyanobacterial toxin, microcystin-LR. FEMS Microbiology Letters, 189, 155–158.

  • Mohamed, Z. A., Carmichael, W. W., & Hussein, A. A. (2003). Estimation of microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Environmental Toxicology, 18, 137–141.

    Article  CAS  Google Scholar 

  • Mol, H., Plaza-Bolaños, P., Zomer, P., de Rijk, T.C., Stolker, A., Mulder, P. (2008). Toward a generic extraction method for simultaneous determination of pesticides, mycotoxins, plant toxins and veterinary drugs in feed and food matrixs. Analytical Chemistry, 80, 9450-9459.

  • Moreno, I. M., Herrador, M. A., Atencio, L., Puerto, M., González, A. G., & Cameán, A. M. (2011). Differentiation between microcystin contaminated and uncontaminated fish by determination of unconjugated MCs using an ELISA anti-Adda test based on receiver-operating character curves threshold values: application to Tinca tinca from natural ponds. Environmental Toxicology, 26(1), 45–56.

    Article  CAS  Google Scholar 

  • Paerl, H. W., & Huisman, J. (2009). Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports, 1, 27–37.

    Article  CAS  Google Scholar 

  • Papadimitriou, T., Kagalou, I., Bacopoulos, V., & Leonardos, I. D. (2009). Accumulation of microcystins in water and fish tissues: an estimation of risks associated with microcystins in most of the Greek lakes. Environmental Toxicology, 25, 418–427.

    Article  Google Scholar 

  • Papadimitriou, T., Kagalou, I., & Leonardos, I. D. (2012a). Seasonally accumulation of microcystins in the various tissues of an endemic and protected fish species (Rutilus panosi) with different sizes. Clean - Soil, Air, Water, 40(4), 402–407.

    Article  CAS  Google Scholar 

  • Papadimitriou, T., Kagalou, I., Stalikas, C., Pilidis, G., & Leonardos, I. D. (2012b). Assessment of microcystin distribution and biomagnification in tissues of aquatic food web compartments from a shallow lake and evaluation of potential risks to public health. Ecotoxicology, 2, 1155–1166.

    Article  Google Scholar 

  • Poste, A. E., Hecky, R. E., & Guildford, S. J. (2011). Evaluating microcystin exposure risk through fish consumption. Environmental Science and Technology, 45, 5806–5811.

    Article  CAS  Google Scholar 

  • Romo, S., Fernández, F., Ouahid, Y., & Barón-Sola, Á. (2012). Assessment of microcystins in lake water and fish (Mugilidae, Liza sp.) in the largest Spanish coastal lake. Environmental Monitoring and Assessment, 184, 939–949.

    Article  CAS  Google Scholar 

  • Sipiä, V. O., Lahti, K., Kankaanpää, H. T., Vuorinen, P. J., & Meriluoto, J. A. O. (2002). Screening for cyanobacterial hepatotoxins in herring and salmon from the Baltic Sea. Aquatic Ecosystem Health and Management, 5(4), 451–456.

    Article  Google Scholar 

  • Smith, J. L., & Boyer, G. L. (2009). Standardization of MC extraction from fish tissues: a novel internal standard as a surrogate for polar and non-polar variants. Toxicon, 53, 238–245.

    Article  CAS  Google Scholar 

  • Smith, J. L., & Haney, J. F. (2006). Foodweb transfer, accumulation, and depuration of microcystins, a cyanobacterial toxin, in pumpkinseed sunfish (Lepomis gibbosus). Toxicon, 48, 580–589.

    Article  CAS  Google Scholar 

  • Soares, R. M., Magalhães, V. F., Azevedo, S. M. F. O. (2004). Accumulation and depuration of microcystins (cyanobacteria hepatotoxins) in Tilapiarendalli (Cichlidae) under laboratory conditions. Aquatic Toxicology, 70, 1–10.

  • Uneo, Y., Nagata, S., Tsutsumi, T., Hasegawa, A., Watanabe, M. F., Park, H. D., Chen, G. C., Chen, G., & Yu, S. Z. (1996). Detection of MCs, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis, 17, 1317–1321.

    Article  Google Scholar 

  • Vareli, K., Zarali, E., Zacharioudakis, G. S. A., Vagenas, G., Varelis, V., Pilidis, G., Briasoulis, E., & Sainis, I. (2012). Microcystin producing cyanobacterial communities in Amvrakikos Gulf (Mediterranean Sea, NW Greece) and toxin accumulation in mussels (Mytilus galloprovincialis). Harmful Algae, 15, 109–118.

    Article  CAS  Google Scholar 

  • World Health Organization (2003). Guidelines for Safe Recreational Water Environments; Coastal and Fresh Waters. Vol. 1, (p.219). Geneva: WHO.

  • Wilson, A. E., Gossiaux, D. C., Höök, T. O., Berry, J. P., Landrum, P. F., Dyble, J., & Guildford, S. J. (2008). Evaluation of the human health threat associated with the hepatotoxin MC in the muscle and liver tissues of yellow perch (Perca flavescens). Canadian Journal of Fisheries and Aquatic Sciences, 65, 1487–1497.

    Article  CAS  Google Scholar 

  • Wood, S. A., Briggs, L. R., Sprosen, J., Ruck, J. G., Wear, R. G., Holland, P. T., & Bloxham, M. (2006). Changes in concentrations of MCs in rainbow trout, freshwater mussels, and cyanobacteria in Lakes Rotoiti and Rotoehu. Environmental Toxicology, 21, 205–222.

    Article  CAS  Google Scholar 

  • Xie, L. Q., Xie, P., Guo, L. G., Li, L., Miyabara, Y., & Park, H. D. (2005). Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China. Environmental Toxicology, 20, 293–300.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the U.S. Environmental Protection Agency’s Science to Achieve Results (STAR) program  and the Confederated Tribes of the Colville Reservation. We thank Scott Mattinson and Lee Deobald for laboratory assistance and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen P. Preece.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preece, E.P., Moore, B.C., Swanson, M.E. et al. Identifying best methods for routine ELISA detection of microcystin in seafood. Environ Monit Assess 187, 12 (2015). https://doi.org/10.1007/s10661-014-4255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4255-y

Keywords

Navigation