Skip to main content
Log in

Groundwater nitrate contamination and use of Cl/Br ratio for source appointment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Source appointment for groundwater nitrate contamination is critical in prioritizing effective strategy for its mitigation. Here, we assessed the use of Cl/Br ratio and statistical correlation of hydro-chemical parameters to identify the nitrate source to the groundwater. A total of 228 samples from 19 domestic wells distributed throughout the study area were collected during June 2011–May 2012 and analyzed for various physicochemical parameters. Study area was divided into three spatial zones based on demographic features, viz., northern, southern, and central part. Nitrate concentration in 57 % of samples exceeded the prescribed safe limit for drinking stipulated by the World Health Organization (WHO) and Bureau of Indian standards (BIS). The central part of the study area showed elevated nitrate concentration ranging from below detection limit (BDL) to 263.5 mg/l as NO3 and demonstrated high attenuation within the immediate vicinity thereby restricting diffusion of the nitrate to the adjacent parts. Resolution of correlation matrix as statistical indicator for nitrate contamination was poor. Seventy-seven percent of samples with high nitrate concentration (>45 mg/l as NO3 ) showed strong association with high Cl/Br mass ratio (350–900), indicating mixing of sewage and septic tank effluents with groundwater as a primary source for the nitrate in the studied area. Nitrate level during monsoon (BDL, 229.9 mg/l as NO3 ), post-monsoon (BDL, 263.5 mg/l as NO3 ), and pre-monsoon (0.5–223.1 mg/l as NO3 ) indicated additional contribution of surface leaching to groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alcalá, F. J., & Custodio, E. (2008). Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. Journal of Hydrology, 359, 189–207.

    Article  Google Scholar 

  • BIS (2004). Drinking water specification. Bureau of Indian Standards, Second revision of IS:10500, New Delhi.

  • Brindha, K., Rajesh, R., Murugan, R., & Elango, L. (2012). Nitrate pollution in groundwater in some rural areas of Nalgonda district, Andhra Pradesh, India. Journal of Environmental Science and Engineering, 54(1), 64–70.

    CAS  Google Scholar 

  • Chidambaram, S., Karmegam, U., Prasanna, M. V., Sasidhar, P., & Vasanthavigar, M. (2011). A study on hydrochemical elucidation of coastal groundwater in and around Kalpakkam region, Sothern India. Environmental Earth Sciences, 64(5), 1419–1431.

    Article  CAS  Google Scholar 

  • Davidson, E., David, M., Galloway, J., Goodale, C., Haeuber, R., Harrison, J., Howarth, R., Jaynes, D., Lowrance, R., Nolan, T., Peel, J., Pinder, R., Porter, E., Synder, C., Townsend, A., & Ward, M. H. (2012). Excess nitrogen in U.S. environment: trends, risks, and solutions. Issues in Ecology, 15, 1–16.

    Google Scholar 

  • Davis, S. N., Whittemore, D. O., & Fabryka-Martin, J. (1998). Uses of chloride/bromide ratios in studies of potable water. Ground Water, 36, 338–350.

    Article  CAS  Google Scholar 

  • Davis, S. N., Fabryka-Martin, J. T., & Wolfsberg, L. E. (2004). Variations of bromide in potable groundwater in the United States. Ground Water, 42(6), 902–909.

    Article  CAS  Google Scholar 

  • Fetter, C. W. (1999). Contaminant hydrogeology (p. 500). NJ, USA: Prentice Hall.

    Google Scholar 

  • Flury, M., & Papritz, A. (1993). Bromide in the natural environment: Occurance and toxicity. Journal of Environmental Quality, 22(4), 747–758.

    Article  CAS  Google Scholar 

  • Fu, B., Zhuang, X., Jiang, G., Shi, J., & Lu, Y. (2007). Environmental problems and challenges in China. Environmental Science and Technology, 41, 7597–7602.

    Article  CAS  Google Scholar 

  • Gerritse, R. G., & George, R. J. (1988). The role of soil organic matter in the geochemical cycling of chloride and bromide. Journal of Hydrology, 101(1–4), 83–95.

    Article  CAS  Google Scholar 

  • Gurumoorthy, C., Sasidhar, P., Arumugham, V., & Mathur, R. K. (2004). Sub-surface investigations on deep saline groundwater of charnockite rock formation, Kalpakkam, India. Environmental Monitoring and Assessment, 91, 211–222.

    Article  CAS  Google Scholar 

  • Heinonen-Tanski, H., & van Wijk-Sijbesma, C. (2005). Human excreta for plant production. Boresource Technology, 96, 403–411.

    Article  CAS  Google Scholar 

  • Hudak, P. F. (1999). Chloride and nitrate distributions in the Hickory aquifer, Central Texas, USA. Environmental International, 25, 393–401.

    Article  CAS  Google Scholar 

  • Hudak, P. F. (2003). Chloride/bromide ratios in leachate derived from farm-animal waste. Environmental Pollution, 121, 23–25.

    Article  CAS  Google Scholar 

  • Johnson, P. T. J., Townsend, A. R., Cleaveland, C. C., Glibert, P. M., Howarth, R. W., McKenzie, V. J., Rejmankova, E., & Ward, M. H. (2010). Linking environmental nutrient enrichment and disease emergence in humans and wildlife. Ecological Applications, 20, 16–29.

    Article  Google Scholar 

  • Jørgensen, P. R., Urup, J., Helstrup, T., Jensen, M. B., Eiland, F., & Vinther, F. P. (2004). Transport and reduction of nitrate in clayey till underneath forest and arable land. Journal of Contaminant Hydrology, 73(1–4), 207–226.

    Article  Google Scholar 

  • Karmegam, U., Chidambaram, S., Sasidhar, P., Manivannan, R., Manikandan, S., & Anandhan, P. (2010). Geochemical characterization of groundwater's of shallow coastal aquifer in and around Kalpakkam, South India. Research Journal of Environmental and Earth Sciences, 2(4), 170–177.

    CAS  Google Scholar 

  • Katz, B. G., Griffin, D. W., McMahon, P. B., Harden, H., Wade, E., Hicks, R. W., & Chanton, J. (2010). Fate of effluent-borne contaminants beneath septic tank drainfields overlying a karst aquifer. Journal of Environmental Quality, 39, 1181–1195.

    Article  CAS  Google Scholar 

  • Katz, B. G., Ebeerts, S. M., & Kauffman, L. J. (2011). Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: A review and examples from principal aquifers in the United States. Journal of Hydrology, 397, 151–166.

    Article  CAS  Google Scholar 

  • Korom, S. F. (1992). Natural denitrification in the saturated zone: A review. Water Resources Research, 28(6), 1657–1668.

    Article  CAS  Google Scholar 

  • Kundu, M. C., & Mandal, B. (2009). Nitrate enrichment in groundwater from long-term intensive agriculture: Its mechanistic pathways and prediction through modeling. Environmental Science & Technology, 43(15), 5837–5843.

    Article  CAS  Google Scholar 

  • Lewis, J. W., Foster, S. D., & Draser, B. S. (1980). The risk of groundwater pollution by on-site sanitation in developing countries, a literature review. International Reference Centre for Waste Disposal (IRCWD) Report No. 01/82, Duebendorf, Switzerland.

  • Mattern, S., Fasbender, D., & Vanclooster, M. (2009). Discriminating sources of nitrate pollution in an unconfined sandy aquifer. Journal of Hydrology, 376, 275–284.

    Article  CAS  Google Scholar 

  • McArthur, J. M., Sikdar, P. K., Hoque, M. A., & Ghosal, U. (2012). Cl/Br ratios and implications for arsenic pollution of groundwater in the Bengal Basin and Red River Basin, Vietnam. Science of the Total Environment, 437, 390–402.

  • Mondal, N. C., Saxena, V. K., & Singh, V. S. (2008). Occurrence of elevated nitrate in groundwaters of Krishna delta, India. African Journal of Science and Technology, 2(9), 265–271.

    Google Scholar 

  • Mondal, N. C., Singh, V. P., Singh, V. S., & Saxena, V. K. (2010). Determining the interaction between groundwater and saline water through groundwater major ions chemistry. Journal of Hydrology, 388, 100–111.

    Article  CAS  Google Scholar 

  • Mondal, N. C., Singh, V. S., Saxena, V. K., & Singh, V. P. (2011). Assessment of seawater impact using major hydrochemical ions: A case study from Sadras, Tamilnadu, India. Environment Monitoring and Assessment, 177(1–4), 315–335.

    Article  CAS  Google Scholar 

  • Mueller, D. K., Hamilton, P. A., Helsel, D. R., Hitt, K. J., & Ruddy, B. C. (1995). Nutrients in ground water and surface water of the United States; an analysis of data through 1992. US Geological Survey Water Resources Investigations Report, 95-4031.

  • Murgulet, D., & Tick, G. R. (2013). Understanding the sources and fate of nitrate in a highly developed aquifer system. Joural of Contaminant Hydrology, 155, 69–81.

    Article  CAS  Google Scholar 

  • Panno, S. V., Hackley, K. C., Hwang, H. H., Greenberg, S. E., Krapac, I. G., Landsberger, S., & O’Kelly, D. J. (2006). Characterization and identification of Na–Cl sources in ground water. Ground Water, 44, 176–187.

    Article  CAS  Google Scholar 

  • Pastén-Zapata, E., Ledesma-Ruiz, R., Harter, T., Ramίrez, A. I., & Mahlknecht, J. (2014). Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach. Science of the Total Environment, 470–471, 855–864.

    Article  Google Scholar 

  • Rani, R. D., & Sasidhar, P. (2011). Stability assessment and characterization of colloids in coastal groundwater aquifer system at Kalpakkam. Environment Earth Sciences, 62, 233–243.

    Article  CAS  Google Scholar 

  • Rengaraj, S., Murugesan, V., Elango, L., & Elampooranan, T. (1996). Nitrate in groundwaters of suburban regions of Madras city. Indian Journal of Environment Protection, 16(8), 573–576.

    CAS  Google Scholar 

  • Rivett, M. O., Buss, S. R., Morgan, P., Smith, J. W. N., & Bemment, C. D. (2008). Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Research, 42, 4215–4232.

    Article  CAS  Google Scholar 

  • Sankararamakrishnan, N., Sharma, A. K., & Lyengar, L. (2008). Contamination of nitrate and fluoride in groundwater along the Ganges Alluvial Plain of Kanpur district, Uttar Pradesh, India. Environmental Monitoring and Assessment, 146(1–3), 375–382.

    Article  CAS  Google Scholar 

  • Sasidhar, P., & Kumar, S. B. V. (2008). Assessment of groundwater corrosiveness for unconfined aquifer system at Kalpakkam. Environment Monitoring and Assessment, 145, 445–452.

    Article  CAS  Google Scholar 

  • Saxena, V. K., Mondal, N. C., Singh, V. S., & Kumar, D. (2005). Identification of water-bearing fractures in hard rock terrain by electrical conductivity logs, India. Environmental Geology, 48(8), 1084–1095.

    Article  CAS  Google Scholar 

  • Singh, B., Singh, Y., & Sekhon, G. S. (1995). Fertilizer-N efficiency and nitrate pollution of groundwater in developing countries. Journal of Contaminant Hydrology, 20, 167–184.

    Article  Google Scholar 

  • Sivakumar, C., & Elango, L. (2008). Assessment of water quality in Kalpakkam region, Tamil Nadu. Nature, Environment and Pollution Technology, 7(4), 687–691.

    CAS  Google Scholar 

  • Somasundaram, M. V., Ravindran, G., & Tellam, H. (1993). Ground-water pollution of the madras urban aquifer, India. Ground Water, 31(1), 4–11.

    Article  CAS  Google Scholar 

  • Spalding, R. F., & Exner, M. E. (1993). Occurrence of nitrate in groundwater—A review. Journal of Environmental Quality, 22(3), 392–402.

    Article  CAS  Google Scholar 

  • Suthar, S., Bisbnoi, P., Singh, S., Mutiyar, P. K., Nema, A. K., & Patil, N. S. (2009). Nitrate contamination in groundwater of some rural areas of Rajasthan, India. Journal of Hazardous Materials, 171, 189–199.

    Article  CAS  Google Scholar 

  • Tesoriero, A. J., Liebscher, H., & Cox, S. E. (2000). Mechanism and rate of denitrification in an agricultural watershed: Electron and mass balance along groundwater flow paths. Water Resources Research, 36(6), 1545–1559.

    Article  CAS  Google Scholar 

  • Thomas, M. A. (2000). The effect of residential development on ground-water quality near Detroit, Michigan. Journal of the American Water Resources Association, 36, 1023–1038.

    Article  CAS  Google Scholar 

  • WHO. (2011). Guidelines for drinking water quality (p. 541). Geneva: World Health Organization.

    Google Scholar 

  • Wolgast M. (1993). Rena vatten. Om tankar i kretslopp. Uppsala. 186.

Download references

Acknowledgment

The authors are grateful to Director, IGCAR, Kalpakkam, for his constant encouragement and support in the pursuit of environmental research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Satpathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samantara, M.K., Padhi, R.K., Satpathy, K.K. et al. Groundwater nitrate contamination and use of Cl/Br ratio for source appointment. Environ Monit Assess 187, 50 (2015). https://doi.org/10.1007/s10661-014-4211-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4211-x

Keywords

Navigation