Skip to main content

Advertisement

Log in

Geospatial quantification and analysis of environmental changes in urbanizing city of Kolkata (India)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Over the past five decades, the fragile wetland ecosystem surrounding the city of Kolkata has witnessed extensive changes in the name of urban development. In this study, we elaborate relationships among biophysical parameters and land surface temperature (LST) in Kolkata city and nearby surrounding areas where rapid urbanization has occurred. LST and associated surface physical characteristics were assessed using Landsat images acquired for the years 1989, 2006, and 2010. The satellite data was used to study the spatiotemporal urban footprint and correlation among normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), normalized difference water index (NDWI) and LST. Land use land cover (LULC) maps prepared using supervised classification had overall accuracy of 90, 88, and 86 % and kappa coefficient of 0.8726, 0.8455, and 0.8212 for 1989, 2006, and 2010, respectively. The spatial expansion as a consequence of increasing urban population is 108.94 km2 over past two decades. The urban built-up in and around the city extends up to 88.71 km2 in 1989, 144.64 km2 in 2006, and 197.65 km2 in 2010. These changes have attributed in elevating surface temperature in the study region. Analysis of biophysical parameters shows LST and NDBI having a positive correlation, LST and NDVI having negative correlation, while NDBI and NDWI having a perfectly negative correlation. Satellite estimated temperatures of the surface show a warming trend evident from increasing mean surface temperature values from 27.36 °C in 1989 to 30.025 °C in 2006 and 33.023 °C in 2010. The magnitude and extent of the estimates of LST are consistent with the urbanization pattern throughout the city and adjoining areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamo, S. B. (2010). Environmental migration & cities in the context of global environmental change. Current Opinion in Environmental Sustainability, 2(3), 161–165.

    Article  Google Scholar 

  • Amiri, R., Weng, Q., Alimohammadi, A., & Alavipanah, S. K. (2009). Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sensing of Environment, 113, 2606–2617.

    Article  Google Scholar 

  • Arnfield, A. J. (2003). two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23, 1–26.

    Article  Google Scholar 

  • Atkinson, P. M. (2004). Resolution manipulation and sub-pixel mapping. In S. M. de Jong & F. D. van der Meer (Eds.), Remote sensing image analysis—including the spatial domain. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Bounoua, L., Safia, A., Masek, J., Peters-Lidard, C., & Imhoff, M. L. (2009). Impact of urban growth on surface climate: a case study in Oran, Algeria. Journal of Applied Meteorology and Climatology, 48, 217–231.

    Article  Google Scholar 

  • Census of India (2011). Government of India. New Delhi.

  • Cerveny, R. S., & Balling, R. C., Jr. (1998). Weekly cycles of air pollutants, precipitation and tropical cyclones in the coastal NW Atlantic region. Nature, 394, 561–563.

    Article  CAS  Google Scholar 

  • Chatterjee, R. S., Fruneau, B., Rudant, J. P., Roy, P. S., Frison, P. L., Lakhera, R. C., Dadhwal, V. K., & Saha, R. (2006). Subsidence of Kolkata (Calcutta) City, India during the 1990s as observed from space by Differential Synthetic Aperture Radar Interferometry (D-InSAR) technique. Remote Sensing of Environment, 102, 176–185.

    Article  Google Scholar 

  • Chen, J. (2007). Rapid urbanization in China: a real challenge to soil protection and food security. Catena, 69, 1–15.

    Article  Google Scholar 

  • Chen, X. L., Zhao, H. M., Li, P. X., & Yin, Z. Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104, 133–146.

    Article  Google Scholar 

  • Dontree, S. (2010). Relation of land surface temperature (LST) and land use/land cover (LULC) from remotely sensed data in Chiang Mai—Lamphun basin. In: SEAGA conference, 2010 Hanoi, Vietnam. Available from: http://seaga.xtreemhost.com/seaga2010/CS5D_Dontree.pdf. Accessed 15 Sept 2012

  • Dye, C. (2008). Health and urban living. Science, 319(5864), 766–769.

    Article  CAS  Google Scholar 

  • Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., & Gibbs, H.K. (2005). Global Consequences of Land Use. Science, 309, 570–574.

  • Gabor, P., & Jombach, S. (2009). The relationship between the biological activity and the land surface temperature in Budapest. Applied Ecology and Environmental Research, 7, 241–251.

    Article  Google Scholar 

  • Gallo, K. P., Tarpley, J. D., Mcnab, A. L., & Karl, T. R. (1995). Assessment of urban heat islands: a satellite perspective. Atmospheric Research, 37, 37–43.

    Article  Google Scholar 

  • Gao, B. (1996). NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58, 257–266.

    Article  Google Scholar 

  • Goetz, S. J. (1997). Multi-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. International Journal of Remote Sensing, 18, 71–94.

    Article  Google Scholar 

  • Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global change and the ecology of cities. Science, 319, 756.

    Article  CAS  Google Scholar 

  • Grimmond, S. (2007). Urbanization and global environmental change: local effects of urban warming. The Geographical Journal, 173, 83–88.

    Article  Google Scholar 

  • Groffman, P. M., Dorsey, A. M., & Mayer, P. M. (2005). N processing within geomorphic structures in urban streams. Journal of the North American Benthological Society, 24, 613–625.

    Article  Google Scholar 

  • Huang, S., Yeh, C., & Chang, L. (2010). The Transition to an Urbanizing World and the Demand for Natural Resources. Current Opinion in Environmental Sustainability 2, 136–143.

  • Jackson, T. J., Chen, D., Michael, C., Fuqin, L., Martha, A., Charles, W., Paul, D., & Ray, H. E. (2004). Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sensing of Environment, 92, 475–482.

    Article  Google Scholar 

  • Jansen, L. M., & Gregorio, D. A. (2003). Land-use data collection using the “land cover classification system” results from a case study in Kenya. Land Use Policy, 20, 131–148.

    Article  Google Scholar 

  • Jiang, J., & Tian, G. (2010). Analysis of the impact of land use/land cover change on land surface temperature with remote sensing. Procedia Environmental Sciences, 2, 571–575.

    Article  Google Scholar 

  • Julien, Y., & Sobrino, J. A. (2009). The Yearly Land Cover Dynamics (YLCD) method: an analysis of global vegetation from NDVI and LST parameters. Remote Sensing of Environment, 113, 329–334.

    Article  Google Scholar 

  • Julien, Y., Sobrino, J. A., & Verhoef, W. (2006). Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sensing of Environment, 103, 43–55.

    Article  Google Scholar 

  • Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature, 423, 528–531.

    Article  CAS  Google Scholar 

  • Kaushal, S. S., Groffman, P. M., Band, L. E., Shields, C., Morgan, R. P., Palmer, M. A., Belt, K. T., Swan, C. M., Findlay, S. E. G., & Fisher, G. T. (2008). Interaction between urbanisation and climate variability amplifies watershed nitrate export in Maryland. Environmental Science and Technology, 42, 5872–5878.

    Article  CAS  Google Scholar 

  • IMD Kolkata (2014). Available at: http://www.imdkolkata.gov.in/tourist/kolkata_tourism_weather_info_1.pdf. Last Accessed on 16 Nov 2014.

  • Li, Z., & Fox, J. M. (2012). Mapping rubber tree growth in mainland Southeast Asia using time-series MODIS 250 m NDVI and statistical data. Applied Geography, 32, 420–432.

    Article  Google Scholar 

  • Maki, M., Ishiahra, M., & Tamura, M. (2004). Estimation of leaf water status tomonitor the risk of forest fires by using remotely sensed data. Remote Sensing of Environment, 90, 441–450.

    Article  Google Scholar 

  • Maxwell, S. K., & Sylvester, K. M. (2012). Identification of “ever-cropped” land (1984–2010) using Landsat annual maximum NDVI image composites: southwestern Kansas case study. Remote Sensing of Environment, 121, 186–195.

    Article  Google Scholar 

  • McKinney, M. L. (2008). Effects of urbanization on species richness: a review of plants and animals. Urban Ecosystems, 11, 161–176.

    Article  Google Scholar 

  • Miller, R. B., & Small, C. (2003). Cities from space: potential applications of remote sensing in urban environmental research and policy. Environment Science and Policy, 6, 129–137.

    Article  Google Scholar 

  • Moore, M., Gould, P., & Keary, B. S. (2003). Global urbanization and impact on health. International Journal of Hygiene and Environmental Health, 206(4–5), 269–278.

    Article  Google Scholar 

  • Oke, T. R. (1997). Urban climates and global change. In A. Perry & R. Thompson (Eds.), Applied Climatology: Principles and Practices (pp. 273–287). London: Routledge.

    Google Scholar 

  • Owen, T. W., Carlson, T. N., & Gillies, R. R. (1998). An assessment of satellite remotely sensed land cover parameters in quantitatively describing the climatic effect of urbanization. International Journal of Remote Sensing, 19, 1663–1681.

    Article  Google Scholar 

  • Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual Review of Ecology and Systematics, 32, 333–365.

    Article  Google Scholar 

  • Qin, Z., Karnieli, A., & Berliner, P. (2001). A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel–Egypt border region. International Journal of Remote Sensing, 22, 3719–3746.

    Article  Google Scholar 

  • Raynolds, M. K., Comiso, J. C., Walker, D. A., & Verbyla, D. (2008). Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI. Remote Sensing of Environment, 112, 1884–1894.

    Article  Google Scholar 

  • Sandholt, I., Rasmussen, K., & Anderson, J. (2002). A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79, 213–224.

    Article  Google Scholar 

  • Savard, J. P. L., Clergeau, P., & Mennechez, G. (2000). Biodiversity concepts and urban ecosystems. Landscape and Urban Planning, 48, 131–142.

    Article  Google Scholar 

  • Schott, J. R., Barsi, J. A., Nordgren, B. L., Raqueno, N. G., & Alwis, D. (2001). Calibration of Landsat thermal data and application to water resource studies. Remote Sensing of Environment, 78, 108–117.

    Article  Google Scholar 

  • Sen, S. (2011). Effect of urban sprawl on human habitation in urban fringe and peri-urban areas in Kolkata metropolitan area. India Journal, 8–4, 58–66.

    Google Scholar 

  • Sharma, R. (2014). Development and behaviour of Surface Urban Heat Island (SUHI) in semi-arid conditions of Delhi (PhD Thesis), TERI University.

  • Sharma, R., Ghosh, A., Joshi, P. K. (2012). Spatio-temporal footprints of urbanisation in Surat, the Diamond City of India (1990–2009). Environmental Monitoring and Assessment, 273–287. doi:10.1007/s10661-012-2792-9.

  • Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from Landsat TM 5. Remote Sensing of Environment, 90(4), 434–440.

    Article  Google Scholar 

  • Souch, C., & Grimmond, S. (2006). Applied climatology: urban climate. Progress in Physical Geography, 30, 270–279.

    Article  Google Scholar 

  • Sun, Q., Tan, J., & Xu, Y. (2010). An ERDAS image processing method for retrieving LST and describing urban heat evolution: a case study in the Pearl River Delta Region in South China. Environmental Earth Sciences, 59, 1047–1055.

    Article  Google Scholar 

  • Taubenböck, H., Wegmann, M., Berger, C., Breunig, M., Roth, A., Mehl, H. (2008). Spatiotemporal analysis of Indian mega cities. The international archives of the photogrammetry. Remote Sensing and Spatial Information Sciences. 37.

  • Taubenböck, H., Wegmann, M., Roth, A., Mehl, H., & Dech, S. (2009). Urbanization in India—spatiotemporal analysis using remote sensing data. Computers, Environment and Urban Systems, 33, 179–188.

    Article  Google Scholar 

  • Thapa, R. B., & Murayama, Y. (2009). Examining spatiotemporal urbanization patterns in Kathmandu Valley, Nepal: remote sensing and spatial metrics approaches. Remote Sensing, 1, 534–556.

    Article  Google Scholar 

  • Threlfall, C. G., Law, B., & Banks, P. B. (2012). Sensitivity of insectivorous bats to urbanization: implications for suburban conservation planning. Biological Conservation, 146, 41–52.

    Article  Google Scholar 

  • UN. (2012). World urbanisation prospects—The 2011 revision. New York: United Nations Department of Economic and Social Affairs/Population Division.

    Google Scholar 

  • Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86, 370–384.

    Article  Google Scholar 

  • Weiss, J. L., Gutzler, D. S., Coonrod, J. E. A., & Dahm, C. N. (2004). Long-term vegetation monitoring with NDVI in a diverse semi-arid setting, central New Mexico, USA. Journal of Arid Environments, 58, 249–272.

    Article  Google Scholar 

  • Weng, Y. (2007). Spatiotemporal changes of landscape pattern in response to urbanization. Landscape and Urban Planning, 81, 341–353.

    Article  Google Scholar 

  • Weng, Q., & Yang, S. (2004). Managing the adverse thermal effects of urban development in a densely populated Chinese city. Journal of Environmental Management, 70(2), 145–156.

    Article  Google Scholar 

  • Weng, Q., Lu, D., & Liang, B. (2006). Urban surface biophysical descriptors and land surface temperature variations. Photogrammetric Engineering & Remote Sensing, 72(11), 1275–1286.

    Article  Google Scholar 

  • Xiao, H., & Weng, Q. (2007). The impact of land use and land cover changes on land surface temperature in a karst area of China. Journal of Environmental Management, 85, 245–257.

    Article  Google Scholar 

  • Yuan, F., & Bauer, M. E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106, 375–386.

    Article  Google Scholar 

  • Zha, Y., Gao, J., & Ni, S. (2003). Use of normalised difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24, 583–594.

    Article  Google Scholar 

  • Zhang, J., Wang, Y., & Li, Y. (2006). A C++ Program for Retrieving Land Surface Temperature from the Data of Landsat TM/ETM+ band6. Computers & Geosciences, 32, 1796–1805.

  • Zhang, Y., Odeh, I. O. A., & Han, C. (2009). Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a subpixel image analysis. International Journal of Applied Earth Observation and Geoinformation, 11, 256–264.

    Article  Google Scholar 

  • Zhou, W., Huang, G., & Cadenasso, M. L. (2011). Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landscape and Urban Planning, 102(1), 54–63.

    Article  Google Scholar 

Download references

Acknowledgments

RS and PKJ thank the Department of Science and Technology (DST), Ministry of Science and Technology, Government of India, and AC acknowledges HSBC Climate Scholarship of the TERI University for funding PhD research. The authors also acknowledge the anonymous reviewers and editorial board for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan Kumar Joshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Chakraborty, A. & Joshi, P.K. Geospatial quantification and analysis of environmental changes in urbanizing city of Kolkata (India). Environ Monit Assess 187, 4206 (2015). https://doi.org/10.1007/s10661-014-4206-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4206-7

Keywords

Navigation