Different exposure of infants and adults to ultrafine particles in the urban area of Barcelona

Abstract

Air pollutants have been linked with a number of adverse health effects. Children are especially sensitive, particularly when they get close to the exhaust emissions of the vehicles on the street. The objective of this study was to measure the different exposure of infants and adults to ultrafine particles (UFP) as a surrogate marker of air pollution and of risk of deleterious health effects. Two different portable P-TRAK® were used to measure simultaneously exposure to UFPs at different heights, one corresponding to the height of an infant in a stroller (0.55 m) and the other one to the height of the face of an adult pedestrian (1.70 m). Measurements were taken on three different streets with high traffic density in Barcelona, in 10 consecutive days during spring, with two sampling sessions of 1 h each day, moving afoot and taking into account temperature, humidity, and wind speed. Fifty-two thousand and eight (52,008) paired values were obtained, and the results showed about 10 % higher levels of UFP concentration at 0.55 m (48,198 ± 25,296 pt/cm3) compared to 1.70 m (43,151 ± 22,517 pt/cm3). Differences between working and nonworking days were observed. Concentration patterns and variation by days of the week and time periods were related to traffic intensity. This study revealed that infants transported by stroller in urban areas are more exposed to air pollution than walking adults. As infants are more vulnerable and UFP have more effects on their health, measures should be taken to protect this population when it is transported in the street.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ajuntament de Barcelona. (2009). La Red Básica de la Circulación de la Ciudad de Barcelona.

  2. Akbar-Khanzadeh, F., Ames, A., Bisesi, M., Milz, S., Czajkowski, K., et al. (2012). Particulate matter (PM) exposure assessment-horizontal and vertical PM profiles in relation to agricultural activities and environmental factors in farm fields. Journal of Occupational and Environmental Hygiene, 9, 502–516.

    CAS  Article  Google Scholar 

  3. Andersen, Z. J., Wahlin, P., Raaschou-Nielsen, O., Ketzel, M., Scheike, T., et al. (2008). Size distribution and total number concentration of ultrafine and accumulation mode particles and hospital admissions in children and the elderly in Copenhagen, Denmark. Occupational and Environmental Medicine, 65, 458–466.

    CAS  Article  Google Scholar 

  4. Boies, A., Hankey, S., Kittelson, D., Marshall, J. D., Nussbaum, P., et al. (2009). Reducing motor vehicle greenhouse gas emissions in a non-California state: a case study of Minnesota. Environmental Science and Technology, 43, 8721–8729.

    CAS  Article  Google Scholar 

  5. Burtscher, H., & Schuepp, K. (2012). The occurrence of ultrafine particles in the specific environment of children. Paediatric Respiratory Reviews, 13, 89–94.

    Article  Google Scholar 

  6. Buzzard, N. A., Clark, N. N., & Guffey, S. E. (2009). Investigation into pedestrian exposure to near-vehicle exhaust emissions. Environmental Health, 8, 13.

    Article  Google Scholar 

  7. Cattaneo, A., Garramone, G., Taronna, M., Peruzzo, C., & Cavallo, D. M. (2009). Personal exposure to airborne ultrafine particles in the urban area of Milan. Occupational Preventive Health Division, 151, 1–10.

    Google Scholar 

  8. Esplugues, A., Fernández-Patier, R., Aguilera, I., Iñíguez, C., Garcia, S., et al. (2007). Air pollutant exposure during pregnancy and fetal and early childhood development. Research protocol of the INMA [Childhood and Environment Project]. Gaceta Sanitaria, 21, 162–171.

    Article  Google Scholar 

  9. Estarlich, M., Ballester, F., Aguilera, I., Fernández-Somoano, A., Lertxundi, A., et al. (2011). Residential exposure to outdoor air pollution during pregnancy and anthropometric measures at birth in a multicenter cohort in Spain. Environmental Health Perspectives, 119, 1333–1338.

    CAS  Article  Google Scholar 

  10. Ferris, J., Ortega, J. A., López, J., García, J., Aliaga, A., et al. (2003). Autobuses escolares y motores diesel: contaminación atmosférica, exposición pediátrica y efectos adversos en la salud humana. Revista Española de Pediatría, 59, 132–145.

    Google Scholar 

  11. Gidhagen, L., Johansson, C., Langner, J., & Foltescu, V. L. (2005). Urban scale modeling of particle number concentration in Stockholm. Atmospheric Environment, 39, 1711–1725.

    CAS  Google Scholar 

  12. Gómez-Moreno, F. J., Pujadas, M., Plaza, J., Rodríguez-Maroto, J. J., Martínez-Lozano, P., et al. (2011). Influence of seasonal factors on the atmospheric particle number concentrationand size distribution in Madrid. Atmospheric Environment, 45, 3169–3180.

    Article  Google Scholar 

  13. Harrison, R. M., & Jones, A. M. (2005). Multisite study of particle number concentrations in urban air. Environmental Science and Technology, 39, 6063–6070.

    CAS  Article  Google Scholar 

  14. Harrison RM, Kinnersleya RP. (2004). Pollution, Air. Encyclopedia of Physical Science and Technology. 3rd Edition 539–555.

  15. Hauck, H. (1998). Revision of ambient air quality standards for PM? Toxicology Letters, 96–97, 269–276.

    Article  Google Scholar 

  16. Health Effects Institute (HEI). Understanding the Health Effects of Ambient Ultrafine Particles. HEI Perspectives. 2013. http://pubs.healtheffects.org/getfile.php?u=893 [Accessed December 12, 2013].

  17. Heinrich, J., & Slama, R. (2007). Fine particles, a major threat to children. International Journal of Hygiene and Environmental Health, 210, 617–622.

    CAS  Article  Google Scholar 

  18. Holland, W. W. (1994). Effect of air pollution on children. Pediatrics, 53, 839–841.

    Google Scholar 

  19. Kamenetsky, E., & Vieru, N. (1995). Model of air flow and air pollution concentration in urban canyons. Boundary-Layer Meteorology, 73, 203–206.

    Article  Google Scholar 

  20. Kaur, S., & Nieuwenhuijsen, M. J. (2009). Determinants of personal exposure to PM2.5, ultrafine particle counts and CO in a transport microenvironment. Environmental Science and Technology, 43, 4737–4743.

    CAS  Article  Google Scholar 

  21. Kaur, S., Nieuwenhuijsen, M. J., & Colville, R. N. (2005). Pedestrian exposure to air pollution along a major road in Central London, UK. Atmospheric Environment, 39, 7307–7320.

    CAS  Article  Google Scholar 

  22. Künzli, N., Kaiser, R., Medina, S., Studnicka, M., Chanel, O., et al. (2000). Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet, 356, 795–801.

    Article  Google Scholar 

  23. Lacasana, M., Esplugues, A., & Ballester, F. (2005). Exposure to ambient air pollution and prenatal and early childhood health effects. European Journal of Epidemiology, 20, 183–199.

    CAS  Article  Google Scholar 

  24. Morawska, L., He, C., Hitchins, J., Gilbert, D., & Parappukkaran, S. (2001). The relationship between indoor and outdoor airborne particles in the residential environment. Atmospheric Environment, 35, 3463–3473.

    CAS  Article  Google Scholar 

  25. Ostro, B., Tobias, A., Querol, X., Alastuey, A., Amato, F., et al. (2011). The effects of particulate matter sources on daily mortality: a case-crossover study of Barcelona, Spain. Environmental Health Perspectives, 119, 1781–1787.

    CAS  Article  Google Scholar 

  26. Penttinen, P., Timonen, K. L., Tiittanen, P., Mirme, A., Ruuskanen, J., et al. (2001). Number concentration and size of particles in urban air: effects on spirometric lung function in adult asthmatic subjects. Environmental Health Perspectives, 109, 319–323.

    CAS  Article  Google Scholar 

  27. Peters, A., Wichmann, H. E., Tuch, T., Heinrich, J., & Heyden, J. (1997). Respiratory effects are associated with the number of ultrafine particles. American Journal of Respiratory and Critical Care Medicine, 155, 1376–1383.

    CAS  Article  Google Scholar 

  28. Putaud, J.-P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W., et al. (2010). A European aerosol phenomenology-3: physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmospheric Environment, 44, 1308–1320.

    CAS  Article  Google Scholar 

  29. Puustinen, A., Hämeri, K., Pekkanen, J., Kulmala, M., De Hartog, J., et al. (2007). Spatial variation of particle number and mass over four European cities. Atmospheric Environment, 41, 6622–6636.

    CAS  Article  Google Scholar 

  30. Rodríguez, S., & Cuevas, E. (2007). The contributions of minimum primary emissions and new particle formation enhancements to the particle number concentration in urban air. Journal of Aerosol Science, 38, 1207–1219.

    Article  Google Scholar 

  31. Rodríguez, S., Van Dingenen, R., Putaud, J. P., Dell‘Acqua, A., Pey, J., et al. (2007). A study on the relationship between mass concentrations, chemistry and number size distribution of urban fine aerosols in Milan, Barcelona & London. Atmospheric Chemistry and Physics, 7, 2217–2232.

    Article  Google Scholar 

  32. Rodríguez, S., Cuevas, E., González, Y., Ramos, R., Romero, P. M., et al. (2008). Influence of sea breeze circulation and road traffic emissions on the relationship between particle number, black carbon, PM1, PM2.5 and PM2.5-10 concentrations in a coastal city. Atmospheric Environment, 42, 6523–6534.

    Article  Google Scholar 

  33. Rojas L, Garibay V. (2003). Las partículas suspendidas, aeropartículas o aerosoles: ¿hacen daño a la salud?; ¿podemos hacer algo? Gaceta Ecológica 69: 29–44.

  34. Ruuskanen, J., Tuch, T., Ten Brink, H., Peters, A., Khlystov, A., et al. (2001). Concentrations of ultrafine, fine and PM2.5 particles in three European cities. Atmospheric Environment, 35, 3729–3738.

    CAS  Article  Google Scholar 

  35. Sannolo, N., Lamberti, M., & Pedata, P. (2010). Human health effects of ultrafine particles. Medicina del Lavoro, 32, 348–351.

    CAS  Google Scholar 

  36. Schwartz, J. (2004). Air pollution and children’s health. Pediatrics, 13, 1037–1043.

    Google Scholar 

  37. Spira-Cohen, A., Chen, L. C., Kendall, M., Lall, R., & Thurston, G. D. (2011). Personal exposures to traffic-related air pollution and acute respiratory health among Bronx schoolchildren with asthma. Environmental Health Perspectives, 119, 559–565.

    Article  Google Scholar 

  38. Sunyer, J., Castellsague, J., Saez, M., Tobias, A., & Anto, J. M. (1996). Air pollution and mortality in Barcelona. Journal of Epidemiology and Community Health, 50, 76–80.

    Article  Google Scholar 

  39. Terzano, C., Di Stefano, F., Conti, V., Graziani, E., & Petroianni, A. (2010). Air pollution ultrafine particles: toxicity beyond the lung. European Review Medicine Pharmacology Science, 14, 809–821.

    CAS  Google Scholar 

  40. United Nations Environment Programme. (2002). Children in the new millennium: environmental impact on health. New York: United Nations Children’s Fundation and World Health Organization.

    Google Scholar 

  41. Van Dingenen, R., Raes, F., Putaud, J.-P., Baltensperger, U., Charron, A., et al. (2004). A European aerosol phenomenology-1: physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmospheric Environment, 38, 2561–2577.

    Article  Google Scholar 

  42. Weichenthal, S., Dufresne, A., & Infante-Rivard, C. (2007). Indoor ultrafine particles and childhood asthma: exploring a potential public health concern. Biostatistics Occupational Health, 17, 81–91.

    CAS  Google Scholar 

  43. World Health Organization. (2006). Regional Office for Europe. Regional risks of particulate matter from long-range trans boundary air pollution. Available http://www.euro.who.int/__data/assets/pdf_file/0006/78657/E88189.pdf [Accessed December 12, 2013].

Download references

Acknowledgments

This study was supported by intramural funding of the Neuropsychopharmacologvy Program at IMIM and partially supported by Generalitat de Catalunya (Spain) AGAUR (2009SGR1388), Universitat Autònoma de Barcelona and Red SAMID, RETIC Instituto Carlos III, Madrid, Spain. We want to acknowledge the collaboration of Audrey de Nazelle (IMIM).

No source of support of funding was received.

Conflict of interest

The authors have no conflict of interest and did not receive any funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oscar Garcia-Algar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garcia-Algar, O., Canchucaja, L., d’Orazzio, V. et al. Different exposure of infants and adults to ultrafine particles in the urban area of Barcelona. Environ Monit Assess 187, 4196 (2015). https://doi.org/10.1007/s10661-014-4196-5

Download citation

Keywords

  • Infant
  • Air
  • Pollution
  • Environmental exposure
  • Ultrafine particles
  • Urban area