Skip to main content
Log in

Influence of organic carbon and metal oxide phases on sorption of 2,4,6-trichlorobenzoic acid under oxic and anoxic conditions

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Chlorobenzoic acids represent crucial recalcitrant metabolites in the environment; thus, the influence of soil components on the sorption of 2,4,6-trichlorobenzoic acid (TCB) under oxic and anoxic conditions was studied. The surficial physiognomies of untreated and isolated soil samples were studied using FTIR, XRD, specific surface area, and PZC determination. The roles of redox potential, dissolved organic carbon (DOC), and pH, particularly under anoxic condition, were appraised. Batch equilibrium adsorption studies on soils of variable Fe/Mn oxides and organic carbon showed that adsorption was low across all components (log K oc = 0.82–3.10 Lg−1). The sorption of 2,4,6-TCB was well described by the pseudo second-order kinetic model. The fluctuation of both redox potential and pH during anoxic experiment had a negative impact on the sorption, partitioning, and the oxidation of organic matter. Linear relationships were observed for K d with both soil total organic carbon (TOC) and surface area (SA). The results showed the existence of DOC-mediated sorption of 2,4,6-TCB which seems to be enhanced at lower pH. The reductive dissolution, particularly of iron compounds, possibly impeded sorption of 2,4,6-TCB under anoxic condition. It could be inferred that habitats dominated by fluctuating oxygen concentrations are best suited for the development of environmental conditions capable of mineralizing 2,4,6-TCB and similar xenobiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Avena, M. J., & Koopal, L. K. (1998). Desorption of humic acids from an iron oxide surface. Environmental Science & Technology, 32, 2572–2577.

    Article  CAS  Google Scholar 

  • Bedard, D. L. (2003). Polychlorinated biphenyls in aquatic sediments: Environmental fate and outlook for biological treatment. In M. M. Häggblom & I. Bossert (Eds.), Dehalogenation: Microbial processes and environmental applications (pp. 443–465). Boston: Kluwer Press.

    Google Scholar 

  • Blanachard, G., Maunaye, M., & Martin, G. (1984). Removal of heavy metals from watersby means of natural zeolites. Water Research, 18, 1501–1507.

    Article  Google Scholar 

  • Callao, P. (2007). Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere, 69, 1151–1158.

    Article  Google Scholar 

  • Chao, T. T. (1984). Use of partial dissolution techniques in geochemical exploration. Journal of Geochemical Explosives, 20, 101–135.

    Article  CAS  Google Scholar 

  • Chiou, C. T., Malcolm, R. L., Brinton, T. I., & Kile, D. E. (1986). Water solubility enhancementof some organic pollutants and pesticides by dissolved humic and fulvicacids. Environmental Science & Technology, 20, 502–508.

    Article  CAS  Google Scholar 

  • Chiou, C. T., Kile, D. E., Brinton, T. I., Malcolm, R. L., Leenheer, J. A., & McCarthy, P. A. (1987). Comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids. Environmental Science & Technology, 21, 1231–1234.

    Article  CAS  Google Scholar 

  • DiGeronimo, M. I., Nikaido, M., & Alexander, M. (1979). Utilization of chlorobenzoates by microbial populations in sewage. Applied and Environmental Microbiology, 37, 619–625.

    CAS  Google Scholar 

  • Dolfing, J., & Tiedje, J. M. (1991). Innuence of substituents on reductive dehalogenation of 3-chlorobenzoate analogs. Applied and Environmental Microbiology, 57, 820–824.

    CAS  Google Scholar 

  • Field, J. A., & Sierra-Alvarez, R. (2008). Microbial transformation of chlorinated benzoates. Reviews in Environmental Science and Biotechnology, 7, 191–210.

    Article  CAS  Google Scholar 

  • Freundlich, H. M. F. (1906). Über die adsorption in lösungen. Zeitschrift für Physikalische Chemie, 57A, 385–470.

    Google Scholar 

  • Gauthier, T. D., Seitz, W. R., & Grant, C. L. (1987). Effect of structural and compositional variations of dissolved humic materials on pyrene K0C values”. Environmental Science & Technology, 21, 243–248.

    Article  CAS  Google Scholar 

  • Gerritse, J., & Gottschal, J. C. (1992). Mineralization of the herbicide 2,3,6-trichlorobenzoic acid by a co-culture of anaerobic and aerobic bacteria. FEMS Microbiology Ecology, 101, 89–98.

    Article  CAS  Google Scholar 

  • Gichner, T., Lovecka, P., & Vrchotova, B. (2008). Genomic damage induced in tobacco plants by chlorobenzoic acids—metabolic products of polychlorinated biphenyls. Mutation Research, 657, 140–145.

    Article  CAS  Google Scholar 

  • Gotoh, S., & Patrick, W. H. (1974). Transformation of iron in a waterlogged soil as influenced by redox potential and pH. Soil Science Society of America Journal, 38, 66–71.

    Article  Google Scholar 

  • Gruau, G., Dia, A., Olivie-Lauqueta, G., Davranche, M., & Pinay, G. (2004). Controls on the distribution of rare earth elements in shallow groundwaters. Water Research, 38, 3576–3586.

    Article  CAS  Google Scholar 

  • Hang, P. T. (1970). Methylene blue absorption by clay minerals—determination of surface areas and cation exchange capacities. Clays and Clay Minerals, 18, 203–212.

    Article  Google Scholar 

  • Horowitz, A., Sunita, J. M., & Tiedje, J. M. (1983). Reductive dehalogenations of halobenzoates by anaerobic lake sediment microorganisms. Applied and Environmental Microbiology, 45, 1459–1465.

    CAS  Google Scholar 

  • Hunchak-Kariouk, K., Schweitzer, L., & Suffet, I. H. (1997). Partitioning of 2,2,4,4_-tetrachlorobiphenyl by the dissolved organic matter in oxic and anoxic pore waters. Environmental Science & Technology, 31, 639–645.

    Article  CAS  Google Scholar 

  • Kaiser, K., & Guggenberger, G. (2003). Mineral surfaces and soil organic matter. European Journal of Soil Science, 54, 219–236.

    Article  CAS  Google Scholar 

  • Kaiser, K., & Zech, W. (1999). Release of natural organic matter sorbed to oxides and a subsoil. Soil Science Society of America Journal, 63, 1157–1166.

    Article  CAS  Google Scholar 

  • Langmuir, L. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Largegren, S. (1898). About the theory of so-called adsorption of soluble substances. KungligaSuensk Vetenskapsakademiens Handlingar, 24, 1–39.

    Google Scholar 

  • Lee, P. Y., & Chen, C. Y. (2009). Toxicity and quantitative structure–activity relationships of benzoic acids to Pseudokirchneriellasubcapitata. Journal of Hazardous Materials, 165, 156–161.

    Article  CAS  Google Scholar 

  • Li, F. M., Wang, X. L., Li, Y., Guo, S. H., & Zhong, A. P. (2006). Selective extraction and separation of Fe, Mn oxides and organic materials in river surficial sediments. Journal of Environmental Sciences-China, 18(6), 1233–1240.

    Article  CAS  Google Scholar 

  • Lima, E. C., Royer, B., Vaghetti, J. C. P., Brasil, J. L., Simon, N. M., dos Santos, A. A., Jr., Pavan, F. A., Dias, S. L. P., Benvenutti, E. V., & da Silva, E. A. (2007). Adsorption of Cu (II) on Araucaria angustifolia wastes: determination of the optimal conditions bystatistic design of experiments. Journal of Hazardous Materials, 140, 211–220.

    Article  CAS  Google Scholar 

  • Mac Rae, L. C., & Alexander, M. (1965). Microbial degradation of selected herbicides in soil. Journal of Agricultural and Food Chemistry, 13, 72–76.

    Article  CAS  Google Scholar 

  • Matson, C., Palatnikov, G., Islamzadeh, A., McDonald, T., Autenrieth, R., Donnelly, K., & Bickham, J. (2005). Chromosomal damage in two species of aquatic turtles (Emys orbicularis and Mauremyscaspica) inhabiting contaminated sites in Azerbaijan. Ecotoxicology, 14, 513–525.

    Article  CAS  Google Scholar 

  • Matson, C. W., Lambert, M. M., McDonald, T. J., Autenrieth, R. L., Kirby, C. D., Islamzadeh, A., Politov, D. I., & Bickham, J. W. (2006). Evolutionary toxicology: population-level effects of chronic contaminant exposure on the marsh frogs (Ranaridibunda) of Azerbaijan. Environmental Health Perspectives, 114, 547–552.

    Article  CAS  Google Scholar 

  • Mikutta, R., Kleber, M., Kaiser, K., & Jahn, R. (2005). Review: organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate. Soil Science Society of America Journal, 69(1), 120–135.

    Article  CAS  Google Scholar 

  • Olivie-Lauquet, G., Gruau, G., Dia, A., Riou, C., Jaffrezic, A., & Henin, O. (2001). Release of trace elements in wetlands: role of seasonal variability. Water Research, 35, 943–952.

    Article  CAS  Google Scholar 

  • Ololade, I. A., Oladoja, N. A., Oloye, F. F., Alomaja, F., Akerele, D. D., Iwaye, J., & Aikpokpodion, P. (2014). Sorption of glyphosate on soil components: the roles of metal oxides and organic materials. Soil and Sediment Contamination: An International Journal, 23, 571–585.

    Article  CAS  Google Scholar 

  • Pedersen, J. A., Gabelich, C. J., Lin, C., & Suffet, I. H. (1999). Aeration effects on the partitioning of a PCB to anoxic sediment pore water dissolved organic matter. Environmental Science & Technology, 33, 1388–1397.

    Article  CAS  Google Scholar 

  • Pedersen, H. D., Postma, D., Jakobsen, R., & Larsen, O. (2005). Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II). Geochimica EtCosmochimica Acta, 69, 3967–3977.

    Article  CAS  Google Scholar 

  • Pei, Z. G., Shan, X. Q., Wen, B., Zhang, S. Z., Yan, L. G., & Khan, S. U. (2006). Effect of copper on the adsorption of p-nitrophenol onto soils. Environmental Pollution, 139(3), 541–549.

    Article  CAS  Google Scholar 

  • Pickering, E. W., & Veneman, P. L. M. (1984). Moisture regimes and morphological characteristics in a hydrosequence in central Massachusetts. Soil Science Society of America Journal, 48, 113–118.

    Article  Google Scholar 

  • Reuter, R. J., & Bell, J. C. (2001). Soils and hydrology of a wet sandy Catena in East Central Minnesota. Soil Science Society of America Journal, 65, 1559–1569.

    Article  CAS  Google Scholar 

  • Sahm, H., Brunner, M., & Schobert, S. M. (1986). Anaerobic degradation of halogenated aromatic compounds. Microbial Ecology, 12, 147–153.

    Article  CAS  Google Scholar 

  • Seunghum, H., & Linda, S. L. (2004). Hydrophilic and hydrophobic adsorption of organic acids by variable-change soils: effect of chemical acidity and acidic functional group. Environmental Science & Technology, 38, 5413–5419.

    Article  Google Scholar 

  • Sorensen, S. R., Holtze, M. S., Simonsen, A., & Aamand, J. (2007). Degradation and mineralization of nanomolar concentrations of the herbicide dichlobenil and its persistent metabolite 2,6-dichlorobenzamide by Aminobacter spp. isolated from dichlobenil-treated soils. Applied Environmental Microbiology, 73, 399–406.

    Article  Google Scholar 

  • Swartz, C. D., Donnelly, K. C., Islamzadeh, A., Rowe, G. T., Rogers, W. J., Palatnikov, G. M., Mekhtiev, A. A., Kasimov, R., McDonald, T. J., Wickliffe, J. K., Presley, B. J., & Bickham, J. W. (2003). Chemical contaminants and their effects in fish and wildlife from the industrial zone of Sumgayit, Republic of Azerbaijan. Ecotoxicology, 12, 509–521.

    Article  CAS  Google Scholar 

  • Tao, Q. H., Wang, D. S., & Tang, H. X. (2006). Effect of surfactants at low concentrations on the sorption of atrazine by natural sediment. Water Environment Research, 78(7), 653–660.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace-metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K., Palanivelu, K., & Velan, M. (2006). Biosorption of copper (II) and cobalt(II) from aqueous solutions by crab shell particles. Bioresearch Technology, 97, 1411–1419.

    Article  CAS  Google Scholar 

  • Wahid, P. A., & Sethunathan, N. (1979). Sorption–desorption of α, β and γ isomers of hexachlorocyclohexane in soils. Journal of Agricultural and Food Chemistry, 27, 1050–1053.

    Article  CAS  Google Scholar 

  • Walker, G. M., & Weatherley, L. R. (1999). Kinetics of acid dye adsorption on GAC. Water Research, 33, 1895–1899.

    Article  CAS  Google Scholar 

  • Yu, K. C., Tsai, L. J., Chen, S. H., & Ho, S. T. (2001). Chemical binding of heavy metals in anoxic river sediments. Water Research, 35(17), 4086–4094.

    Article  CAS  Google Scholar 

  • Zhao, Y. H., Ji, G. D., Cronin, M. T. D., & Dearden, J. C. (1998). QSAR study of the toxicity of benzoic acids to Vibrio fischeri, daphnia magna and carp. Science of Total Environment, 216, 205–215.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Adekunle Ajasin University Akungba Akoko (Nigeria) Tertiary Education Trust Fund (TETFUND 2013/2014). Special thanks to Assistant Professor Ifedayo Victor Ogungbe of the Department of Chemistry and Biochemistry, Jackson State University, USA, for valuable contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Ayodele Ololade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ololade, I.A., Oladoja, N.A., Alomaja, F. et al. Influence of organic carbon and metal oxide phases on sorption of 2,4,6-trichlorobenzoic acid under oxic and anoxic conditions. Environ Monit Assess 187, 4170 (2015). https://doi.org/10.1007/s10661-014-4170-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4170-2

Keywords

Navigation