Skip to main content
Log in

A new approach for assessing the state of environment using isometric log-ratio transformation and outlier detection for computation of mean PCDD/F patterns in biota

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To assess the state of the environment, various compartments are examined as part of monitoring programs. Within monitoring, a special focus is on chemical pollution. One of the most toxic substances ever synthesized is the well-known dioxin 2,3,7,8-TCDD (2,3,7,8-tetra-chlor-dibenzo-dioxin). Other PCDD/F (polychlorinated-dibenzo-dioxin and furan) can act toxic too. They are ubiquitary and persistent in various environmental compartments. Assessing the state of environment requires knowledge of typical local patterns of PCDD/F for as many compartments as possible. For various species of wild animals and plants (so called biota), I present the mean local congenere profiles of ubiquitary PCDD/F contamination reflecting typical patterns and levels of environmental burden for various years. Trends in time series of means can indicate success or failure of a measure of PCDD/F reduction. For short time series of mean patterns, it can be hard to detect trends. A new approach regarding proportions of outliers in the corresponding annual cross-sectional data sets in parallel can help detect decreasing or increasing environmental burden and support analysis of time series. Further, in this article, the true structure of PCDD/F data in biota is revealed, that is, the compositional data structure. It prevents direct application of statistical standard procedures to the data rendering results of statistical analysis meaningless. Results indicate that the compositional data structure of PCDD/F in biota is of great interest and should be taken into account in future studies. Isometric log-ratio (ilr) transformation is used, providing data statistical standard procedures that can be applied too. Focusing on the identification of typical PCDD/F patterns in biota, outliers are removed from annual data since they represent an extraordinary situation in the environment. Identification of outliers yields two advantages. First, typical (mean) profiles and levels of PCDD/F contamination can be identified. Second, decreasing (increasing) proportions of outliers could indicate decreasing (increasing) numbers of extraordinary environmental burden rendering the success of PCDD/F reduction strategies for biota. Therefore, probabilities and proportions of outlier contamination are estimated too. To reveal the enormous influence of the method of outlier detection, the applied two well-known procedures are compared, that is, robust Mahalanobis distance and a projection pursuit-based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdi, H., & Williams, L.J. (2010). Principal component analysis. Wiley interdisciplinary reviews: computational statistics, 2, 433–459.

    Article  Google Scholar 

  • Aberson, C.L. (2010). Applied power analysis for the behavioral science. Taylor & Francis Group.

  • Aitchison, J. (1986). The statistical analysis of compositional data. Chapman and Hall.

  • Aitchison, J. (2003). The statistical analysis of compositional Data, reprint of 1986 containing additional material edn. Blackburn.

  • Aitchison, J., & Egozcue, J.J. (2005). Compositional data analysis: where are we and where should we be heading? Mathematical Geology, 37, 829–850.

    Article  Google Scholar 

  • Aries, E., Aanderson, D.R., Fisher, R. (2008). Exposure assessment of workers to airborne PCDD/Fs, PCBs and PAHs at an electric arc furnace steelmaking plant in the uk. Ann. Occup. Hyg., 52, 213-225.

    Article  CAS  Google Scholar 

  • Bacon-Shone, J. (1992). Ranking methods for compositional data. Applied Statistics, 41, 533-537.

    Article  Google Scholar 

  • Barnett, V., & Lewis, T. (1994). Outliers in statistical data. Chichester: Wiley.

    Google Scholar 

  • Basler, H. (1994). Grundbegriffe der Wahrscheinlichkeitsrechnung und Statistischen Methodenlehre. Physica-Verlag.

  • Bernholt, T., & Fischer, P. (2004). The complexity of computing the MCD-estimator, Technical report, Dortmund University, Department of Computer Science and Danish Technical University Kongens Lyngby, IMM.

  • Brown, J., Wagner, R., Feng, H., Bedard, D., Brennan, M., Carnahan, J., May, R. (1987). Environmental dechlorination of pcbs. Environ. Toxicol. Chem., 6, 579–593.

    Article  CAS  Google Scholar 

  • Buekens, A., Cornelis, E., Huang, H., Dewettinck, T. (2009). Fingerprints of dioxin from thermal industrial processes. Chemosphere, 75, 1173–1178.

    Article  Google Scholar 

  • Bühler, F., Schmid, P., Schlatter, C. (1988). Kinetics of pcb elimination in man. Chemosphere, 17, 1717–1726.

    Article  Google Scholar 

  • Castro-Jimnez, J., Mariani, G., Eisenreich, S., Christoph, E., Hanke, G., Canuti, E., Skejo, H., Umlauf, G. (2008). Atmospheric input of pops into lake Maggiore (Northern Italy): PCDD/F and dioxin-like PCB profiles and fluxes in the atmosphere and aquatic system. Chemosphere, 73, 122–130.

    Article  Google Scholar 

  • Chen, C.-C., Wu, K.-Y., Chang-Chien, G.-P. (2011). Point source identification using a simple permutation test: a case study of elevated PCDD/F levels in ambient air and soil and their relation to the distance to a local municipal solid waste incinerator. Stochastic Environmental Research and Risk Assessment.

  • Domingo, J., Schuhmacher, M., Agramunt, M., Llobet, J., Rivera, J., Müller, L. (2002). PCDD/F levels in the neighbourhood of a municipal solid waste incinerator after introduction of technical improvements in the facility. Environment International, 28, 1927.

    Article  Google Scholar 

  • Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueras, G., Barcel-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35, 279–300.

    Article  Google Scholar 

  • Filzmoser, P., Garrett, R.G., Reimann, C. (2005). Multivariate outlier detection in exploration geochemistry. Computational Geosciences, 31, 579–587.

    Article  CAS  Google Scholar 

  • Filzmoser, P., & Hron, K. (2008). Outlier detection for compositional data using robust methods. Mathematical Geosciences, 40, 233–248.

    Article  Google Scholar 

  • Filzmoser, P., Hron, K., Reimann, C. (2009). Univariate statistical analysis of environmental (compositional) data: problems and possibilities. Science of the Total Environment, 407, 6100–6108.

    Article  CAS  Google Scholar 

  • Filzmoser, P., & Varmuza, K. (2010). Chemometrics: multivariate statistical analysis in chemometrics, Vienna, Austria. http://CRAN.R-project.org/.

  • Galeano, P., Pea, D., Tsay, R.S. (2006). Outlier detection in multivariate time series via projection pursuit. Journal of the American Statistical Association, 101, 654–669.

    Article  CAS  Google Scholar 

  • Ham, S.Y., Kim, Y.J., Lee, D.H. (2008). Leaching characteristics of PCDDs/DFs and dioxin-like PCBs from landfills containing municipal solid waste and incineration residues. Chemosphere, 70, 1685–1693.

    Article  CAS  Google Scholar 

  • Hansen, L., Byerly, C., Metcalf, R., Bevill, R. (1975). Effect of a polychlorinated biphenyl mixture on swine reproduction and tissue levels. American Journal of Veterinary Research, 136, 23–26.

    Google Scholar 

  • Henry, T.R., & DeVito, M.J. (2003). Non-dioxin-like PCBs: effects and consideration in ecological risk assessment. US EPA.

  • Krengel, U. (2005). Einführung in die Wahrscheinlichkeitstheorie und Statistik. Vieweg.

  • Lehmann, R. (2012). Der Einfluss statistischer Ausreißer auf die Schätzung der natürlichen Variabilität in Daten zu Biota, P.D thesis, RWTH Aachen University.

  • Mahalanobis, P.C. (1936). On the generalised distance in statistics. Proceedings of the National Institute of Sciences of India, 2, 49–55.

    Google Scholar 

  • Mortensen, A.S., & Arukwe, A. (2008). Estrogenic effect of dioxin-like aryl hydrocarbon receptor (ahr) agonist (pcb congener 126) in salmon hepatocytes. Marine Environmental Research, 66, 119–120.

    Article  CAS  Google Scholar 

  • Pawlowsky-Glahn, V., & Egozcue, J.J. (2002). BLU estimators and compositional data. Mathematical Geology, 34, 259–274.

    Article  Google Scholar 

  • Pawlowsky-Glahn, V., & Egozcue, J.J. (2006). Compositional data and their analysis: an introduction. Geological Society, London, Special Publications, 264, 1–10.

    Article  CAS  Google Scholar 

  • Pena, D., & Prieto, F.J. (2001a). Cluster identification using projections. Journal of the American Statistical Association, 96, 456.

    Google Scholar 

  • Pena, D., & Prieto, F.J. (2001b). Multivariate outlier detection and robust covariance matrix estimation. Technometrics, 43(3), 286–310.

    Article  Google Scholar 

  • Ross, S. (2009). A first course in probability. Prentice Hall press.

  • Rousseeuw, P., & Leroy, A. (2003). Robust regression and outlier detection. New York: Wiley.

    Google Scholar 

  • Samaras, P., Kungolos, A., Karakasidis, T., Georgiou, D., Perakis, K. (2001). Statistical evaluation of PCDD/F emission data during solid waste combustion by fuzzy clustering techniques. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances and Environmental Monitoring, 36, 153–161.

    Article  CAS  Google Scholar 

  • Soffientino, B., Nacci, D.E., Specker, J.L. (2010). Effects of the dioxin-like PCB 126 on larval summer flounder (Paralichthys dentatus). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 152, 9–17.

    Google Scholar 

  • Tsay, R.S. (1988). Outliers, level shifts, and variance changes in time series. Journal of Forecasting, 7, 1–20.

    Article  Google Scholar 

  • Tsay, R.S., Pena, D., Pankratz, A.E. (1998). Outliers in multivariate time series. Statistics and Econometric Series Working Paper, 98-96, 42, 1–20.

    Google Scholar 

  • Umlauf, G. (2004). Dioxins & PCBs: environmental levels and human exposure in candidate countries. Brussels: European Commission.

    Google Scholar 

  • U.S.EPA. (2010). Recommended toxicity equivalence factors (TEFs) for human health risk assessments of 2,3,7,8-Tetrachlorodibenzo-p-dioxin and dioxin-like compounds, epa/600/r-10/005 edn. Washington: Risk Assessment Forum.

    Google Scholar 

  • Wang, Q., Jin, Y., Li, X., Chen, J., Lu, S., Chen, T., Yan, J., Zhou, M., Wang, H. (2014). PCDD/F emissions from hazardous waste incinerators in China. Aerosol and Air Quality Research, 14, 1152–1159.

    CAS  Google Scholar 

  • Wiberg, K., McLachlan, M., Jonsson, P., Johansson, N. (2009). Sources, transport, reservoirs and fate of dioxins, PCBs and HCB in the Baltic Sea environment. Swedish Environmental Protection Agency.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Lehmann.

Appendix

Appendix

Table 6 Values of κ for construction of compositional data points
Table 7 Mean congenere patterns of PCDD (ng/kg) in different biota
Table 8 Mean congenere patterns of PCDF (ng/kg) in different biota
Table 9 Proportions of outliers in annual PCDD/F data
Table 10 Summary of PCDD analyses using PP
Table 11 Summary of PCDD analyses using robust Mahalanobis distance
Table 12 Summary of PCDF analyses using PP
Table 13 Summary of PCDF analyses using robust Mahalanobis distance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehmann, R. A new approach for assessing the state of environment using isometric log-ratio transformation and outlier detection for computation of mean PCDD/F patterns in biota. Environ Monit Assess 187, 4149 (2015). https://doi.org/10.1007/s10661-014-4149-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4149-z

Keywords

Navigation