Skip to main content
Log in

Monitoring of sulfur dioxide emission resulting from biogas utilization on commercial pig farms in Taiwan

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The objective of this work tends to promote methane content in biogas and evaluate sulfur dioxide emission from direct biogas combustion without desulfurization. Analytical results of biogas combustion showed that combustion of un-desulfurized biogas exhausted more than 92 % of SO2 (P < 0.01). In the meantime, more than 90 % of hydrogen sulfide was removed during the combustion process using un-desulfurized biogas (P < 0.01). Those disappeared hydrogen sulfide may deposit on the surfaces of power generator’s engines or burner heads of boilers. Some of them (4.6–9.1 % of H2S) were converted to SO2 in exhaust gas. Considering the impacts to human health and living environment, it is better to desulfurize biogas before any applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahammad, S. Z., Gomes, J., & Sreekrishnan, T. R. (2008). Wastewater treatment for production of H2S-free biogas. Journal of Chemical Technology & Biotechnology, 83, 1163–1169.

    Article  CAS  Google Scholar 

  • Cambra-López, M., Aarnink, A. J. A., Zhao, Y., Calvet, S., & Torres, A. G. (2010). Airborne particulate matter from livestock production systems: a review of an air pollution problem. Environmental Pollution, 158, 1–117.

    Article  Google Scholar 

  • Cofala, J. & Syri, S. (1998) Sulfur emissions, abatement technologies and related costs for Europe in the RAINS model database. INTERIM REPORT (IIASA IR-98-035/June). (URL: http://www.iiasa.ac.at/~rains/reports/so2-1.pdf)

  • Copeland, C. (2010) Air quality issues and animal agriculture. Congressional Research Service Report.(URL: http://www.nationalaglawcenter.org/assets/crs/RL32948.pdf)

  • Hamburg, R.A. (1989) Household cooking fuel hydrogen sulfide and sulfur dioxide emissions form stalks, coal and biogas. Biomass, 19, 233–245. (URL: http://www.omega-alpharecycling.com/pdffiles/agricultural%20systems/China/Cookstove%20China%20Emissions.pdf)

  • Huertas, J.I., Giraldo, N. & Izquierdo, S. (2011) Removal of H2S and CO2 from Biogas by Amine Absorption. Mass Transfer in Chemical 134 Engineering Processes, edited by Jozef Markoš (ISBN 978-953-307-619-5), InTech, pp. 133–151. (URL: http://cdn.intechopen.com/pdfs/22869/InTech-Removal_of_h2s_and_co2_from_biogas_by_amine_absorption.pdf)

  • Kantachote, D., Charernjiratrakul, W., Noparatnaraporn, N. & Oda, K. (2008) Selection of sulfur oxidizing bacterium for sulfide removal in sulfate rich wastewater to enhance biogas production. Electronic Journal of Biotechnology, 11 (2) (This journal has no page number). Available from: http://www.ejbiotechnology.info/content/vol11/issue2/full/13/13.pdf (accessed 12 March, 2012).

  • Kapdi, S. S., Vijay, V. K., Rajesh, S. K., & Prasad, R. (2005). Biogas scrubbing, compression and storage: perspective and prospectus in Indian context. Renewable Energy, 30, 1195–1202.

    Article  CAS  Google Scholar 

  • Laursen, J. K. (2007) The process principles of sulfur recovery by the WSA process. Hydrocarbon Engineering. (URL: http://www.topsoe.com/business_areas/gasification_based/~/media/PDF%20files/WSA/Topsoe_%20WSA_process_principles.ashx)

  • Martin, J.H. (2008) A new method to evaluate hydrogen sulfide removal from biogas. (URL: http://repository.lib.ncsu.edu/ir/bitstream/1840.16/1047/1/etd.pdf)

  • Petersson, A. & Wellinger, A. (2009) Biogas upgrading technologies—developments and innovations. Task 37: Energy from biogas and landfill gas. IEA Bioenergy (URL: http://www.en.esbjerg.aau.dk/digitalAssets/80/80449_iea-biogas-upgrading-report-2009.pdf).

  • Potivichayanon, S., Pokethitiyook, P., & Kruatrachue, M. (2005). Hydrogen sulfide removal by a novel fixed-film bioscrubber system. Process Biochemistry, 41, 708–715.

    Article  Google Scholar 

  • Salomon, K. R., & Silva Lora, E. E. (2009). Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass and Bioenery, 33, 1101–1107.

    Article  Google Scholar 

  • Song, Z., Zhou, X., Li, Y., Yang, M., & Xing, J. (2013). Bio-desulfurization and denitrification by anaerobic-anoxic process for the treatment of wastewater from flue gas washing. Water Science and Technology, 67, 2042–2049.

    Article  CAS  Google Scholar 

  • Su, J. J., Liu, B. Y., & Chang, Y. C. (2003). Emission of greenhouse gas from livestock waste and wastewater treatment in Taiwan. Agriculture, Ecosystems & Environment, 95, 253–263.

    Article  CAS  Google Scholar 

  • Su, J. J., Chen, Y. J., Chang, Y. C., & Tang, S. C. (2008). Isolation of sulfur oxidizers for desulfurizing biogas produced from anaerobic piggery wastewater treatment in Taiwan. Australian Journal of Experimental Agriculture, 48, 193–197.

    Article  CAS  Google Scholar 

  • Su, J. J., Chang, Y. C., Chen, Y. J., Chang, C. K., & Lee, S. Y. (2013). Hydrogen sulfide removal from livestock biogas by a farm-scale bio-filter desulfurization system. Water Science and Technology, 67, 1288–1293.

    Article  CAS  Google Scholar 

  • Su, J. J., Chen, Y. J., & Chang, Y. C. (2014). A study of a pilot-scale biogas bio-filter system for utilization on pig farms. Journal of Agricultural Science, 152, 217–224.

    Article  Google Scholar 

  • Syed, M., Soreanu, G., Falletta, P., & Béland, M. (2006). Removal of hydrogen sulfide from gas streams using biological processes: a review. Canadian Biosystems Engineering, 48, 2.1–2.14.

    Google Scholar 

  • UNEP (2002) Guidelines for Biogas systems (Release 1.0), Environmental Due Diligence (EDD) of Renewable Energy Projects, United Nations Environment Program (UNEP) (URL: http://www.energy-base.org/uploads/media/EDD_Biogas_Systems.pdf)。

  • USEPA (2013) Sulfur Dioxide (SO2) Primary Standards: Table of History of the National Ambient Air Quality Standard for Sulfur Dioxide during 1971–2010. US Envornmental Protection Agency (USEPA) (URL: http://www.epa.gov/ttn/naaqs/standards/so2/s_so2_history.html)

  • Wellinger, A & Lindberg, A. (2000) Biogas upgrading and utilization. Task 24: Energy from biological conversion of organic waste. IEA Bioenergy, pp.1 − 19.

Download references

Acknowledgments

The study was made possible by grants awarded from the Council of Agriculture (COA), Executive Yuan, Taiwan, ROC, Project No. 99AS-7.2.1-AD-U1. Authors thank Liga Mariya for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Jeng Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, JJ., Chen, YJ. Monitoring of sulfur dioxide emission resulting from biogas utilization on commercial pig farms in Taiwan. Environ Monit Assess 187, 4109 (2015). https://doi.org/10.1007/s10661-014-4109-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4109-7

Keywords

Navigation