The activity concentration of post-Chernobyl 137Cs in the area of the Opole Anomaly (southern Poland)

  • Łukasz Wróbel
  • Agnieszka Dołhańczuk-Śródka
  • Andrzej Kłos
  • Zbigniew Ziembik
Article

Abstract

During the years 2007 and 2010, the activity concentration of 137Cs accumulated in soil, mosses Pleurozium schreberi and lichens Hypogymnia physodes was measured. The studies covered the areas of the so-called Opole Anomaly. In consequence of the Chernobyl nuclear power plant breakdown in 1986, relatively large amounts of this radionuclide were deposited in this area. In some areas of the Anomaly, over 100 times higher surface activity of 137Cs was detected, compared to the lowest values registered in Poland. Currently, 137Cs is still present in woodlands and wastelands. As at 2 April 2013, the surface activity concentration of 137Cs in soil on the tested area was from 0.34 to 67.5 kBq m−2. In comparison, the surface activity concentration of 137Cs as at 1 June 1986, soon after deposition, was from 2.08 to over 125 kBq m−2. The maximum specific activity concentrations of 137Cs in mosses and lichens sampled for testing in 2010 were respectively 1234 and 959 Bq kg−1. It was also proven that the changes in activity concentration of 137Cs in the area of the Anomaly are mainly the consequence of the radioactive decay of this radionuclide.

Keywords

Mosses Soil Lichens Radionuclides 

References

  1. Adelinė, D., Rääf, C., Magnusson, Å., Behring, J., Zakaria, M., Adlys, G., Skog, G., Stenström, K., & Mattsson, S. (2006). Assessment of the environmental contamination with long-lived radionuclides around an operating RBMK reactor station. Journal of Environmental Radioactivity, 90, 68–77.CrossRefGoogle Scholar
  2. Beli, M., Sansone, U., & Menegon, S. (1994). Behaviour of radiocaesium in a forest in the eastern Italian Alps. Science of the Total Environment, 157, 257–260.CrossRefGoogle Scholar
  3. Biernacka, M., Henschke, J., & Jagielak, J. (1991). Radiological map of Poland (Radiologiczna mapa Polski). Warsaw: Bezpieczeństwo Jądrowe i Ochrona Radiologiczna.Google Scholar
  4. Bikit, I., Slivka, J., Čonkič, L., Krmar, M., Veskovič, M., Žikič-Todorovič, N., Varga, E., Ćurčić, S., & Mrdja, D. (2005). Radioactivity of the soil in Vojvodina (northern province of Serbia and Montenegro). Journal of Environmental Radioactivity, 78, 11–19.CrossRefGoogle Scholar
  5. Blagoeva, R., & Zikovsky, L. (1995). Geographic and vertical distribution of Cs-137 in soils in Canada. Journal of Environmental Radioactivity, 27, 269–274.CrossRefGoogle Scholar
  6. Celik, N., Cevik, U., Celik, A., & Koz, B. (2009). Natural and artificial radioactivity measurements in Eastern Black Sea region of Turkey. Journal of Hazardous Materials, 162, 146–153.CrossRefGoogle Scholar
  7. Dołhańczuk-Śródka, A., & Wacławek, M. (2007). Translokacja cezu-137 w środowisku. Ecological Chemistry and Engineering S, 14, 147–168.Google Scholar
  8. Dołhańczuk-Śródka, A., Majcherczyk, T., Ziembik, Z., Smuda, M., & Wacławek, M. (2006). Spatial 137Cs distribution in forest soil. Nukleonika, 51(Suppl. 2), 69–79.Google Scholar
  9. Gaso, M., Segovia, N., Herrera, T., Perez-Silva, E., Cervantes, M., Quintero, E., Palacios, J., & Acosta, E. (1998). Radiocesium accumulation in edible wild mushrooms from coniferous forests around the Nuclear Centre of Mexico. Science of the Total Environment, 223, 119–129.CrossRefGoogle Scholar
  10. Giovani, C., Nimis, P. L., Bolognini, G., Padovani, R., & Usco, A. (1994). Bryophytes as indicators of radiocesium deposition in northeastern Italy. Science of the Total Environment, 157, 35–43.CrossRefGoogle Scholar
  11. Hamarneh, I., Wreikat, A., & Toukan, K. (2003). Radioactivity concentrations of 40K, 134Cs, 137Cs, 90Sr, 241Am, 238Pu and 239+240Pu in Jordanian soil samples. Journal of Environmental Radioactivity, 67, 53–67.CrossRefGoogle Scholar
  12. Isajenko, K., Lipiński, P., Piotrowska, B., Kuczbajska, M., & Ząbek, A. (2010). Monitoring concentration of 137 Cs in the soil in 2008-2009 (Monitoring stężeń 137 Cs w glebie w latach 2008-2009). Warsaw: CLOR.Google Scholar
  13. Isajenko, K., Piotrowska, B., Fujak, M., Kuczbajska, M., & Kiełbasińska, A. (2012). Monitoring concentration of 137Cs in the soil in 2010-2011 (Monitoring stężeń 137 Cs w glebie w latach 2010-2011). Warsaw: CLOR.Google Scholar
  14. Jagielak, J., Biernacka, M., Henschke, J., & Sosińska, A. (1997). Radiological Atlas of Poland (Radiologiczny Atlas Polski). Warsaw: Biblioteka Monitoringu Środowiska PIOŚ.Google Scholar
  15. Kłos, A., Rajfur, M., Wacławek, M., & Wacławek, W. (2009). 137Cs transfer from local particulate matter to lichens and mosses. Nukleonika, 54, 297–300.Google Scholar
  16. Kłos, A., Rajfur, M., Wacławek, M., Wacławek, W., Wünschmann, S., & Markert, B. (2010). Quantitative relations between different concentrations of micro- and macroelements in mosses and lichens: the region of Opole (Poland) as an environmental interface in between Eastern and Western Europe. International Journal of Environmental Health Research, 4, 98–119.CrossRefGoogle Scholar
  17. Kłos, A., Rajfur, M., Šrámek, I., & Wacławek, M. (2011). Use of lichen and moss in assessment of forest contamination with heavy metals in Praded and Glacensis Euroregions (Poland and Czech Republic). Water, Air, & Soil Pollution, 222, 367–376.CrossRefGoogle Scholar
  18. Kłos, A., Rajfur, M., Czora, M., & Wacławek, M. (2012). Mechanisms for translocation of heavy metals from soil to epigeal mosses. Water, Air, & Soil Pollution, 223, 1829–1836.CrossRefGoogle Scholar
  19. Knatko, V. A., Skomorokhov, A. G., Asimova, V. D., Strakh, L. I., Bogdanov, A. P., & Mironov, V. P. (1996). Characteristics of 90Sr, 137Cs and 239,240Pu migration in undisturbed soils of Southern Belarus after the Chernobyl accident. Journal of Environmental Radioactivity, 30, 185–196.CrossRefGoogle Scholar
  20. Lavi, N., Golob, G., & Alfassi, Z. B. (2006). Monitoring and surveillance of radio-cesium in cultivated soils and foodstuff samples in Israel 18 years after the Chernobyl disaster. Radiation Measurements, 41, 78–83.CrossRefGoogle Scholar
  21. Lukšienė, B., Marčiulionienė, D., Gudelienė, I., & Schönhofer, F. (2013). Accumulation and transfer of 137Cs and 90Sr in the plants of the forest ecosystem near the Ignalina Nuclear Power Plant. Journal of Environmental Radioactivity, 116, 1–9.CrossRefGoogle Scholar
  22. Melin, J., Wallberg, L., & Suomela, J. (1994). Distribution and retention of cesium and strontium in Swedish boreal forest ecosystems. Science of the Total Environment, 157, 93–105.CrossRefGoogle Scholar
  23. Message (2010) The announcement of the President of the State Agency of the Atomistics from 15 October 2010 in the matter of the radiational situation of the country into III the term 2010 the year. (Komunikat Prezesa Państwowej Agencji Atomistyki z dnia 15 października 2010 r. w sprawie sytuacji radiacyjnej kraju w III kwartale 2010 r.). PAA, Warsaw.Google Scholar
  24. Mietelski, J. W., Jasińska, M., Kozak, K., & Ochab, E. (1996). The method of measurements used in the investigation of radioactive contamination of forests in Poland. Applied Radiation and Isotopes, 47, 1089–1095.CrossRefGoogle Scholar
  25. Nifontova, M. (1995). Radionuclides in the moss-lichen cover of tundra communities in the Yamal Peninsula. Science of the Total Environment, 160(161), 749–752.CrossRefGoogle Scholar
  26. Nifontova, M. G. (2006). Long-term dynamics of technogenic radionuclide concentrations in moss–lichen cover. Russian Journal of Ecology, 37, 247–250.CrossRefGoogle Scholar
  27. Riesen, T., Zimmermann, S., & Blaser, P. (1999). Spatial distribution of 137Cs in forest soils of Switzerland. Water, Air, & Soil Pollution, 114, 277–285.CrossRefGoogle Scholar
  28. Schimmack, W., Flessa, H., & Bunzl, K. (1997). Vertical migration of Chernobyl-derived radiocesium in Bavarian grassland soils. Naturwissenschaften, 84, 204–207.CrossRefGoogle Scholar
  29. Schuller, P., Sepulveda, A., Trumper, R. E., & Castillo, A. (2000). Application of the 137Cs technique to quantify soil redistribution rates in paleohumults from Central-South Chile. Acta Geologica Hispánica, 35, 285–290.Google Scholar
  30. Strand, P., Brown, J. E., Drozhko, E., Mokrov, Y., Salbu, B., Oughton, D., Christensen, G. C., & Amundsen, I. (1999). Biogeochemical behaviour of 137Cs and 90Sr in the artificial reservoirs of Mayak PA, Russia. Science of the Total Environment, 241, 107–116.CrossRefGoogle Scholar
  31. Strzelecki, R., Wołkowicz, S., Szewczyk, J., & Lewandowski, P. (1993). Map concentrations of cesium in Poland, radiological maps of Poland. (Mapa stężeń cezu w Polsce, Radiologiczne mapy Polski). Warszawa: PIG.Google Scholar
  32. Tagami, K., Uchida, S., Ishii, N., & Kagiya, S. (2012). Translocation of radiocesium from stems and leaves of plants and the effect on radiocesium concentrations in newly emerged plant tissues. Journal of Environmental Radioactivity, 111, 65–69.CrossRefGoogle Scholar
  33. Takenaka, C., Onda, Y., & Hamajima, Y. (1998). Distribution of cesium-137 in Japanese forest soils: correlation with the contents of organic carbon. Science of the Total Environment, 222, 193–199.CrossRefGoogle Scholar
  34. Yoshida, S., Muramatsu, Y., Dvornik, A. M., Zhuchenko, T. A., & Linkov, I. (2004). Equilibrium of radiocesium with stable cesium within the biological cycle of contaminated forest ecosystems. Journal of Environmental Radioactivity, 75, 301–313.CrossRefGoogle Scholar
  35. Ziembik, Z., Dołhańczuk-Śródka, A., Komosa, A., Orzeł, J., & Wacławek, M. (2010). Assessment of 137Cs and 239,240Pu distribution in forest soils of the Opole Anomaly. Water, Air, & Soil Pollution, 206, 307–320.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Łukasz Wróbel
    • 1
  • Agnieszka Dołhańczuk-Śródka
    • 1
  • Andrzej Kłos
    • 1
  • Zbigniew Ziembik
    • 1
  1. 1.Biotechnology and Molecular BiologyOpole UniversityOpolePoland

Personalised recommendations