Skip to main content

Analysis of mercury and other heavy metals accumulated in lichen Usnea antarctica from James Ross Island, Antarctica

Abstract

The study was designed to investigate the content and distribution of selected heavy metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Fe, Pb and Zn) in samples of fruticose macrolichen Usnea antarctica from James Ross Island. A special emphasis was devoted to mercury and its species (elemental mercury and methylmercury). It was found that mercury contents were relatively high (up to 2.73 mg kg−1 dry weight) compared to other parts of the Antarctic Peninsula region, while the concentrations of most other elements were within reported ranges. Mercury contents in lichens originating from the interior were higher than those from the coast, which is probably the result of local microclimate conditions. Similar trends were observed for Hg0 and MeHg+, whose contents were up to 0.14 and 0.098 mg kg−1 dry weight, respectively. While mercury did not show a significant correlation with any other element, the mutual correlation of some litophile elements probably refers to the influence on thalli of resuspended weathered material. The influence of habitat and environmental conditions could play an essential role in the bioaccumulation of contaminants rather than just the simple presence of sources. Thus, the study of the thalli of this species can bring a new perspective on the interpretation of contaminant accumulation in lichens of the polar region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bacci, E., Gaggi, C., Duccini, M., Bargagli, R., & Renzoni, A. (1994). Mapping mercury vapours in an abandoned cinnabar mining area by azalea (Azalea indica) leaf trapping. Chemosphere. doi:10.1016/0045-6535(94)90036-1.

    Google Scholar 

  2. Bargagli, R. (2005). Antarctic ecosystems: environmental contamination, climate change, and human impact. Berlin: Springer.

    Google Scholar 

  3. Bargagli, R. (2008). Environmental contamination in Antarctic ecosystems. Science of the Total Environment. doi:10.1016/j.scitotenv.2008.06.062.

    Google Scholar 

  4. Bargagli, R., & Barghigiani, C. (1991). Lichen biomonitoring of mercury emission and deposition in mining, geothermal and volcanic areas of Italy. Environmental Monitoring and Assessment. doi:10.1007/BF00397614.

    Google Scholar 

  5. Bargagli, R., Battisti, E., Focardi, S., & Formichi, P. (1993). Preliminary data on environmental distribution of mercury in northern Victoria Land, Antarctica. Antarctic Science. doi:10.1017/S0954102093000021.

    Google Scholar 

  6. Bargagli, R., Sanchez-Hernandez, J. C., Martella, L., & Monaci, F. (1998). Mercury, cadmium and lead accumulation in Antarctic mosses growing along nutrient and moisture gradients. Polar Biology. doi:10.1007/s003000050252.

    Google Scholar 

  7. Bargagli, R., Sanchez-Hernandez, J. C., & Monaci, F. (1999). Baseline concentrations of elements in the antarctic macrolichen Umbilicaria decussata. Chemosphere. doi:10.1016/S0045-6535(98)00211-2.

    Google Scholar 

  8. Bargagli, R., Agnorelli, C., Borghini, F., & Monaci, F. (2005). Enhanced deposition and bioaccumulation of mercury in Antarctic terrestrial ecosystems facing a coastal polynya. Environmental Science and Technology. doi:10.1021/es0507315.

    Google Scholar 

  9. Bartels, R. (1982). The rank version of von Neumann’s ratio test for randomness. Journal of the American Statistical Association. doi:10.1080/01621459.1982.10477764.

    Google Scholar 

  10. Biester, H., & Scholz, C. (1997). Determination of mercury binding forms in contaminated soils: mercury pyrolysis versus sequential extractions. Environmental Science and Technology. doi:10.1021/es960369h.

    Google Scholar 

  11. Bromwich, D. H., Guo, Z., Bai, L., & Chen, Q. (2004). Modeled antarctic precipitation. Part I: spatial and temporal variability*. Journal of Climate. doi:10.1175/1520-0442(2004)017<0427:MAPPIS>2.0.CO;2.

    Google Scholar 

  12. Cai, Y., Monsalud, S., Jaffé, R., & Jones, R. D. (2000). Gas chromatographic determination of organomercury following aqueous derivatization with sodium tetraethylborate and sodium tetraphenylborate. Comparative study of gas chromatography coupled with atomic fluorescence spectrometry, atomic emission spectrome. Journal of Chromatography A, 876, 147–155.

    Article  CAS  Google Scholar 

  13. Cansaran-Duman, D. (2011). Study on accumulation ability of two lichen species Hypogymnia physodes and Usnea hirta at iron-steel factory site, Turkey. Journal of Environmental Biology, 32, 839–844.

    CAS  Google Scholar 

  14. Carignan, J., Estrade, N., Sonke, J. E., & Donard, O. F. X. (2009). Odd isotope deficits in atmospheric Hg measured in lichens. Environmental Science and Technology. doi:10.1021/es900578v.

    Google Scholar 

  15. Červenka, R., Bednařík, A., Komárek, J., Ondračková, M., Jurajda, P., Vítek, T., et al. (2011). The relationship between the mercury concentration in fish muscles and scales/fins and its significance. Central European Journal of Chemistry. doi:10.2478/s11532-011-0105-8.

    Google Scholar 

  16. Cipro, C. V. Z., Yogui, G. T., Bustamante, P., Taniguchi, S., Sericano, J. L., & Montone, R. C. (2011). Organic pollutants and their correlation with stable isotopes in vegetation from King George Island, Antarctica. Chemosphere. doi:10.1016/j.chemosphere.2011.07.047.

    Google Scholar 

  17. Conti, M. E., & Cecchetti, G. (2001). Biological monitoring: lichens as bioindicators of air pollution assessment-a review. Environmental Pollution, 114, 471–492.

    Article  CAS  Google Scholar 

  18. Cook, A. J., & Vaughan, D. G. (2010). Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere. doi:10.5194/tc-4-77-2010.

    Google Scholar 

  19. Cossa, D., Heimbürger, L.-E., Lannuzel, D., Rintoul, S. R., Butler, E. C. V., Bowie, A. R., et al. (2011). Mercury in the Southern Ocean. Geochimica et Cosmochimica Acta. doi:10.1016/j.gca.2011.05.001.

    Google Scholar 

  20. Coufalík, P., Zvěřina, O., & Komárek, J. (2013a). Atmospheric mercury deposited in a peat bog, the Jeseníky Mountains, Czech Republic. Journal of Geochemical Exploration. doi:10.1016/j.gexplo.2013.06.005.

    Google Scholar 

  21. Coufalík, P., Zvěřina, O., Komárek, J. (2013b). Ultra-trace analysis of mercury deposition in soils and sediments from James Ross Island, Antarctica. In: poster Present. 11th Int. Conf. Mercur. as a Glob. Pollut. Edinburgh, Scotland, 28.7.-2.8. (p 611). http://www.mercury2013.com/view-abstract.php?id=447

  22. Crame, J. A., Pirrie, D., Riding, J. B., & Thomson, M. R. A. (1991). Campanian Maastrichtian (Cretaceous) Stratigraphy of the James-Ross-Island Area, Antarctica. Journal of the Geological Society (London). doi:10.1144/gsjgs.148.6.1125.

    Google Scholar 

  23. Czech Geological Survey. (2009). James Ross Island—northern part. Topographic map 1:25,000. Prague: CGS.

    Google Scholar 

  24. Dethloff, K., Glushak, K., Rinke, A., & Handorf, D. (2010). Antarctic 20th century accumulation changes based on regional climate model simulations. Advances in Meteorology. doi:10.1155/2010/327172.

    Google Scholar 

  25. Development Core Team, R. (2013). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  26. Dos Santos, I. R., Silva-Filho, E. V., Schaefer, C., Maria Sella, S., Silva, C. A., Gomes, V., et al. (2006). Baseline mercury and zinc concentrations in terrestrial and coastal organisms of Admiralty Bay, Antarctica. Environmental Pollution. doi:10.1016/j.envpol.2005.07.007.

    Google Scholar 

  27. Engel, Z., Nývlt, D., & Láska, K. (2012). Ice thickness, areal and volumetric changes of Davies Dome and Whisky Glacier (James Ross Island, Antarctic Peninsula) in 1979–2006. Journal of Glaciology. doi:10.3189/2012JoG11J156.

    Google Scholar 

  28. Evans, C. A., & Hutchinson, T. C. (1996). Mercury accumulation in transplanted moss and lichens at high elevation sites in Quebec. Water, Air, and Soil Pollution. doi:10.1007/BF00282663.

    Google Scholar 

  29. Fitzgerald, W. F., Mason, R. P., & Vandal, G. M. (1991). Atmospheric cycling and air-water exchange of mercury over mid-continental lacustrine regions. Water, Air, and Soil Pollution. doi:10.1007/BF00342314.

    Google Scholar 

  30. King, J. C. (2003). The spatial coherence of interannual temperature variations in the Antarctic Peninsula. Geophysical Research Letters. doi:10.1029/2002GL015580.

    Google Scholar 

  31. Knops, J. M. H., Nash Iii, T. H., Boucher, V. L., & Schlesinger, W. H. (1991). Mineral cycling and epiphytic lichens: implications at the ecosystem level. Lichenologist. doi:10.1017/S0024282991000452.

    Google Scholar 

  32. Krishna, B. M. V., Karunasagar, D., & Arunachalam, J. (2003). Study of mercury pollution near a thermometer factory using lichens and mosses. Environmental Pollution. doi:10.1016/S0269-7491(03)00041-1.

    Google Scholar 

  33. Krishna, B. M. V., Karunasagar, D., & Arunachalam, J. (2004). Sorption characteristics of inorganic, methyl and elemental mercury on lichens and mosses: implication in biogeochemical cycling of mercury. Journal of Atmospheric Chemistry. doi:10.1007/s10874-004-1242-7.

    Google Scholar 

  34. Kristjánsson, L., Gudmundsson, M. T., Smellie, J. L., Mcintosh, W. C., & Esser, R. (2005). Palaeomagnetic, 40 Ar/39 Ar, and stratigraphical correlation of Miocene–Pliocene basalts in the Brandy Bay area, James Ross Island, Antarctica. Antarctic Science. doi:10.1017/S0954102005002853.

    Google Scholar 

  35. Kuballa, T., Leonhardt, E., Schoeberl, K., & Lachenmeier, D. W. (2008). Determination of methylmercury in fish and seafood using optimized digestion and derivatization followed by gas chromatography with atomic emission detection. European Food Research and Technology. doi:10.1007/s00217-008-0949-0.

    Google Scholar 

  36. Láska, K., Barták, M., Hájek, J., Prošek, P., & Bohuslavová, O. (2011a). Climatic and ecological characteristics of deglaciated area of James Ross Island, Antarctica, with a special respect to vegetation cover. Czech Polar Reports. doi:10.5817/CPR2011-1-5.

    Google Scholar 

  37. Láska, K., Prošek, P., Budík, L., & Budíková, M. (2011b). Method of estimation of solar UV radiation in high latitude location based on satellite ozone retrieval with improved algorithm. International Journal of Remote Sensing, 32, 3165–3177.

    Article  Google Scholar 

  38. Leermakers, M., Baeyens, W., Quevauviller, P., & Horvat, M. (2005). Mercury in environmental samples: speciation, artifacts and validation. TrAC Trends in Analytical Chemistry. doi:10.1016/j.trac.2004.01.001.

    Google Scholar 

  39. Lin, C.-J., & Pehkonen, S. O. (1999). The chemistry of atmospheric mercury: a review. Atmospheric Environment. doi:10.1016/S1352-2310(98)00387-2.

    Google Scholar 

  40. Lindberg, S. E., & Stratton, W. J. (1998). Atmospheric mercury speciation: concentrations and behavior of reactive gaseous mercury in ambient air. Environmental Science and Technology. doi:10.1021/es970546u.

    Google Scholar 

  41. Lindberg, S. E., Brooks, S., Lin, C. J., Scott, K. J., Landis, M. S., Stevens, R. K., et al. (2002). Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise. Environmental Science and Technology. doi:10.1021/es0111941.

    Google Scholar 

  42. Lodenius, M. (2013). Use of plants for biomonitoring of airborne mercury in contaminated areas. Environmental Research. doi:10.1016/j.envres.2012.10.014.

    Google Scholar 

  43. Lodenius, M., Tulisalo, E., & Soltanpour-Gargari, A. (2003). Exchange of mercury between atmosphere and vegetation under contaminated conditions. Science of the Total Environment. doi:10.1016/S0048-9697(02)00566-1.

    Google Scholar 

  44. Loppi, S., & Bonini, I. (2000). Lichens and mosses as biomonitors of trace elements in areas with thermal springs and fumarole activity (Mt. Amiata, central Italy). Chemosphere. doi:10.1016/S0045-6535(00)00026-6.

    Google Scholar 

  45. Loseto, L. L., Lean, D. R. S., & Siciliano, S. D. (2004). Snowmelt sources of methylmercury to high arctic ecosystems. Environmental Science and Technology. doi:10.1021/es035146n.

    Google Scholar 

  46. Lupsina, V., Horvat, M., Jeran, Z., & Stegnar, P. (1992). Investigation of mercury speciation in lichens. Analyst, 117, 673–675.

    Article  CAS  Google Scholar 

  47. Machado, A., Šlejkovec, Z., Elteren, J. T., Freitas, M. C., & Baptista, M. S. (2006). Arsenic speciation in transplanted lichens and tree bark in the framework of a biomonitoring scenario. Journal of Atmospheric Chemistry. doi:10.1007/s10874-006-9013-2.

    Google Scholar 

  48. Mão de Ferro, A., Mota, A. M., & Canário, J. (2014). Pathways and speciation of mercury in the environmental compartments of Deception Island, Antarctica. Chemosphere. doi:10.1016/j.chemosphere.2013.08.081.

    Google Scholar 

  49. Martin, P. J., & Peel, D. A. (1978). The spatial distribution of 10m temperatures in the Antarctic Peninsula. Journal of Glaciology, 20, 311–317.

    Google Scholar 

  50. Mlakar, T. L., Horvat, M., Kotnik, J., Jeran, Z., Vuk, T., Mrak, T., et al. (2011). Biomonitoring with epiphytic lichens as a complementary method for the study of mercury contamination near a cement plant. Environmental Monitoring and Assessment. doi:10.1007/s10661-010-1825-5.

    Google Scholar 

  51. Montone, R. C., Taniguchi, S., & Weber, R. R. (2003). PCBs in the atmosphere of King George Island, Antarctica. Science of the Total Environment. doi:10.1016/S0048-9697(02)00649-6.

    Google Scholar 

  52. Mrak, T., Slejkovec, Z., Jeran, Z., Jaćimović, R., & Kastelec, D. (2008). Uptake and biotransformation of arsenate in the lichen Hypogymnia physodes (L.) Nyl. Environmental Pollution. doi:10.1016/j.envpol.2007.06.011.

    Google Scholar 

  53. Murdoch, D. J., & Chow, E. D. (1996). A graphical display of large correlation matrices. American Statistician. doi:10.2307/2684435.

    Google Scholar 

  54. Nevado, J. J. B., Martín-Doimeadios, R. C. R., Krupp, E. M., Bernardo, F. J. G., Fariñas, N. R., Moreno, M. J., et al. (2011). Comparison of gas chromatographic hyphenated techniques for mercury speciation analysis. Journal of Chromatography A. doi:10.1016/j.chroma.2011.05.036.

    Google Scholar 

  55. Nóvoa-Muñoz, J. C., Pontevedra-Pombal, X., Martínez-Cortizas, A., & García-Rodeja Gayoso, E. (2008). Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in southwest Europe (Galicia, NW Spain). Science of the Total Environment. doi:10.1016/j.scitotenv.2008.01.044.

    Google Scholar 

  56. Nývlt, D., Braucher, R., Engel, Z., & Mlčoch, B. (2014). Timing of the Northern Prince Gustav Ice Stream retreat and the deglaciation of northern James Ross Island, Antarctic Peninsula during the last glacial–interglacial transition. Quaternary Research. doi:10.1016/j.yqres.2014.05.003.

    Google Scholar 

  57. Olech, M. (1991). Preliminary observations on the content of heavy metals in thalli of Usnea antarctica Du Rietz (Lichenes) in the vicinity of the “H. Arctowski” Polish Antarctic Station. Polish Polar Research, 12, 129–131.

    Google Scholar 

  58. Osyczka, P., Dutkiewicz, E., & Olech, M. (2007). Trace elements concentrations in selected moss and lichen species collected within Antarctic research stations. Polish Journal of Ecology, 55, 39–48.

    CAS  Google Scholar 

  59. Pisani, T., Munzi, S., Paoli, L., Bačkor, M., Kováčik, J., Piovár, J., et al. (2011). Physiological effects of mercury in the lichens Cladonia arbuscula subsp. mitis (Sandst.) Ruoss and Peltigera rufescens (Weiss) Humb. Chemosphere. doi:10.1016/j.chemosphere.2010.10.062.

    Google Scholar 

  60. Poblet, A., Andrade, S., Scagliola, M., Vodopivez, C., Curtosi, A., Pucci, A., et al. (1997). The use of epilithic Antarctic lichens (Usnea aurantiacoatra and U. antartica) to determine deposition patterns of heavy metals in the Shetland Islands, Antarctica. Science of the Total Environment. doi:10.1016/S0048-9697(97)00265-9.

    Google Scholar 

  61. Rabassa, J., Skvarca, P., Bertani, L., Mazzoni, E. (1982). Glacier inventory of james ross and vega islands, antarctic peninsula*. p. 260–264.

  62. Rott, H., Skvarca, P., & Nagler, T. (1996). Rapid collapse of Northern Larsen Ice Shelf, Antarctica. Science. doi:10.1126/science.271.5250.788.

  63. Schlüter, K. (2000). Review: evaporation of mercury from soils. An integration and synthesis of current knowledge. Environmental Geology. doi:10.1007/s002540050005.

    Google Scholar 

  64. Schroeder, W. H., & Munthe, J. (1998). Atmospheric mercury—an overview. Atmospheric Environment. doi:10.1016/S1352-2310(97)00293-8.

    Google Scholar 

  65. Skov, H., Christensen, J. H., Goodsite, M. E., Heidam, N. Z., Jensen, B., Wåhlin, P., et al. (2004). Fate of elemental mercury in the Arctic during atmospheric mercury depletion episodes and the load of atmospheric mercury to the Arctic. Environmental Science and Technology. doi:10.1021/es030080h.

    Google Scholar 

  66. Slemr, F., Seiler, W., & Schuster, G. (1981). Latitudinal distribution of Mercury over the Atlantic Ocean. Journal of Geophysical Research. doi:10.1029/JC086iC02p01159.

    Google Scholar 

  67. Slemr, F., Schuster, G., & Seiler, W. (1985). Distribution, speciation, and budget of atmospheric mercury. Journal of Atmospheric Chemistry. doi:10.1007/BF00053870.

    Google Scholar 

  68. Steffen, A., Douglas, T., Amyot, M., Ariya, P., Aspmo, K., Berg, T., et al. (2008). A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. Atmospheric Chemistry and Physics. doi:10.5194/acp-8-1445-2008.

    Google Scholar 

  69. Strelin, J., Sone, T., Mori, J., Torielli, C., Nakamura, T. (2006). New Data Related to Holocene Landform Development and Climatic Change from James Ross Island, Antarctic Peninsula. Antarct SE, 58. doi: 10.1007/3-540-32934-X_58.

  70. Száková, J., Kolihová, D., Miholová, D., & Mader, P. (2004). Single-purpose atomic absorption spectrometer AMA-254 for mercury determination and its performance in analysis of agricultural and environmental materials. Chemical Papers, 58, 311–315.

    Google Scholar 

  71. Turner, J., Colwell, S. R., Marshall, G. J., Lachlan-Cope, T. A., Carleton, A. M., Jones, P. D., et al. (2005). Antarctic climate change during the last 50 years. International Journal of Climatology. doi:10.1002/joc.1130.

    Google Scholar 

  72. Vandal, G. M., Mason, R. P., McKnight, D., & Fitzgerald, W. (1998). Mercury speciation and distribution in a polar desert lake (Lake Hoare, Antarctica) and two glacial meltwater streams. Science of the Total Environment. doi:10.1016/S0048-9697(98)00095-3.

    Google Scholar 

  73. Vaughan, D. G., Marshall, G. J., Connolley, W. M., King, J. C., & Mulvaney, R. (2001). Climate change. Devil in the detail. Science. doi:10.1126/science.1065116.

  74. Wängberg, I., Munthe, J., Pirrone, N., Iverfeldt, Å., Bahlman, E., Costa, P., et al. (2001). Atmospheric mercury distribution in Northern Europe and in the Mediterranean region. Atmospheric Environment. doi:10.1016/S1352-2310(01)00105-4.

    Google Scholar 

  75. William, H. S., Munthe, J., & Schroeder, W. H. (1998). Atmospheric mercury—an overview. Atmospheric Environment. doi:10.1016/S1352-2310(97)00293-8.

    Google Scholar 

  76. Wojtuń, B., Kolon, K., Samecka-Cymerman, A., Jasion, M., & Kempers, A. J. (2013). A survey of metal concentrations in higher plants, mosses, and lichens collected on King George Island in 1988. Polar Biology. doi:10.1007/s00300-013-1306-8.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the CzechPolar project for the provision of infrastructure (Johann Gregor Mendel Station) and for financial support from the Grant Agency of the Czech Republic, project P503/12/0682. The work of K. Láska was supported by the Masaryk University project MUNI/A/0902/2012 “Global environmental changes and their impacts” (GlobE). The research has been co-funded from the European Social Fund and the state budget of the Czech Republic.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Josef Komárek.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zvěřina, O., Láska, K., Červenka, R. et al. Analysis of mercury and other heavy metals accumulated in lichen Usnea antarctica from James Ross Island, Antarctica. Environ Monit Assess 186, 9089–9100 (2014). https://doi.org/10.1007/s10661-014-4068-z

Download citation

Keywords

  • Antarctica
  • Heavy metal
  • Mercury
  • Lichen