Skip to main content
Log in

Hydride generation coupled to microfunnel-assisted headspace liquid-phase microextraction for the determination of arsenic with UV–Vis spectrophotometry

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this research, a microfunnel-assisted headspace liquid-phase microextraction technique has been used in combination with hydride generation to determine arsenic (As) by UV–Vis spectrophotometry. The method is based on the reduction of As to arsine (AsH3) in acidic media by sodium tetrahydroborate (NaBH4) followed by its subsequent reaction with silver diethyldithiocarbamate (AgDDC) to give an absorbing complex at 510 nm. The complexing reagent (AgDDC) has been dissolved in a 1:1 (by the volume ratio) mixture of chloroform/chlorobenzene microdroplet and exposed to the generated gaseous arsine via a reversed microfunnel in the headspace of the sample solution. Several operating parameters affecting the performance of the method have been examined and optimized. Acetonitrile solvent has been added to the working samples as a sensitivity enhancement agent. Under the optimized operating conditions, the detection limit has been measured to be 0.2 ng mL−1 (based on 3sb/m criterion, n b = 8), and the calibration curve was linear in the range of 0.5–12 ng mL−1. The relative standard deviation for eight replicate measurements was 1.9 %. Also, the effects of several potential interferences have been studied. The accuracy of the method was validated through the analysis of JR-1 geological standard reference material. The method has been successfully applied for the determination of arsenic in raw and spiked soft drink and water samples with the recoveries that ranged from 91 to 106 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arbab-Zavar, M. H., & Hashemi, M. (2000). Evaluation of electrochemical hydride generation for spectrophotometric determination of As(III) by silver diethyldithiocarbamate. Talanta, 52, 1007–1014.

    Article  CAS  Google Scholar 

  • Arbab-Zavar, M. H., Chamsaz, M., & Heidari, T. (2010). Speciation and analysis of arsenic(III) and arsenic(V) by electrochemical hydride generation spectrophotometric method. Analytical Sciences, 26, 107–110.

    Article  CAS  Google Scholar 

  • Ayotte, J. D., Montgomery, D. L., Flanagan, S. M., & Robinson, K. W. (2003). Arsenic in groundwater in Eastern New England: occurrence, controls, and human health implications. Journal of Environmental Science and Technology, 37, 2075–2083.

    Article  CAS  Google Scholar 

  • Chamsaz, M., Arbab-Zavar, M. H., & Nazari, S. (2003). Determination of arsenic by electrothermal atomic absorption spectrometry using headspace liquid phase microextraction after in situ hydride generation. Journal of Analytical Atomic Spectrometry, 18, 1279–1282.

    Article  CAS  Google Scholar 

  • Chen, W. F., Parette, R., Zou, J. Y., Cannon, F. S., & Dempsey, B. A. (2007). Arsenic removal by iron-modified activated carbon. Water Research, 41, 1851–1858.

    Article  CAS  Google Scholar 

  • Chen, L. W. L., Lu, X., & Le, X. C. (2010). Complementary chromatography separation combined with hydride generation–inductively coupled plasma mass spectrometry for arsenic speciation in human urine. Analytica Chimica Acta, 675, 71–75.

    Article  CAS  Google Scholar 

  • Correia, C. L. T., Gonçalves, R. A., Azevedo, M. S., Vieira, M. A., & Campos, R. C. (2010). Determination of total arsenic in seawater by hydride generation atomic fluorescence spectrometry. Microchemical Journal, 96, 157–160.

    Article  CAS  Google Scholar 

  • D’Ulivo, A., Dedina, J., Mester, Z., Sturgeon, R. E., Wang, Q., & Welz, B. (2011). Mechanisms of chemical generation of volatile hydrides for trace element determination (IUPAC technical report). Pure and Applied Chemistry, 83, 1283–1340.

    Google Scholar 

  • Dedina, J., & Tsalev, D. L. (1995). Hydride generation atomic absorption spectrometry. New York: Wiley.

    Google Scholar 

  • dos Santos, W. N. L., Cavalcante, D. D., Macedo, S. M., Nogueira, J. S., & da Silva, E. G. P. (2013). Slurry sampling and HG AFS for the determination of total arsenic in rice samples. Food Analytical Methods, 6, 1128–1132.

    Article  Google Scholar 

  • El-Hadri, F., Morales-Rubio, A., & de la Guardia, M. (2007). Determination of total arsenic in soft drinks by hydride generation atomic fluorescence spectrometry. Food Chemistry, 105, 1195–1200.

    Article  CAS  Google Scholar 

  • Fragueiro, S., Lavilla, I., & Bendicho, C. (2006). Hydride generation-headspace single-drop microextraction-electrothermal atomic absorption spectrometry method for determination of selenium in waters after photoassisted prereduction. Talanta, 68, 1096–1101.

    Article  CAS  Google Scholar 

  • Gil, R. A., Ferr’ua, N., Salonia, J. A., Olsina, R. A., & Martinez, L. D. (2007). On-line arsenic co-precipitation on ethyl vinyl acetate turning-packed mini-column followed by hydride generation-ICP OES determination. Journal of Hazardous Materials, 143, 431–436.

    Article  CAS  Google Scholar 

  • Hashemi, M., & Modasser, P. (2007). Sequential spectrophotometric determination of inorganic arsenic species by hydride generation from selective medium reactions and colour bleaching of permanganate. Talanta, 73, 166–171.

    Article  CAS  Google Scholar 

  • Henze, G., Wagner, W., & Sander, S. (1997). Speciation of arsenic(V) and arsenic(III) by cathodic stripping voltammetry. Fresenius Journal of Analytical Chemistry, 358, 741–744.

    Article  CAS  Google Scholar 

  • Ilander, A., & Vaisane, A. (2011). The determination of antimony and arsenic concentrations in fly ash by hydride generation inductively coupled plasma optical emission spectrometry. Analytica Chimica Acta, 689, 178–183.

    Article  CAS  Google Scholar 

  • Leal, L. O., Ferrer, L., Forteza, R., & Cerd, V. (2011). Multicommutation flow techniques in the hydride generation-atomic fluorescence determination of arsenic. TrAC Trends in Analytical Chemistry, 30, 761–770.

    Article  CAS  Google Scholar 

  • Liang, P., Peng, L. L., & Yan, P. (2009). Speciation of As(III) and As(V) in water samples by dispersive liquid-liquid microextraction separation and determination by graphite furnace atomic absorption spectrometry. Microchimica Acta, 166, 47–52.

    Article  CAS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58, 201–235.

    Article  CAS  Google Scholar 

  • Matusiewicz, H., & Ślachcińsk, M. (2012). Development of a new hybrid technique for inorganic arsenic speciation analysis by microchip capillary electrophoresis coupled with hydride generation microwave induced plasma spectrometry. Microchemical Journal, 102, 61–67.

    Article  CAS  Google Scholar 

  • Mishra, D., Mehta, A., & Flora, S. J. (2008). Reversal of arsenic-induced hepatic apoptosis with combined administration of DMSA and its analogues in guinea pigs: role of glutathione and linked enzymes. Chemical Research in Toxicology, 21, 400–407.

    Article  CAS  Google Scholar 

  • Pal, A., & Maji, S. K. (2006). Spectrophotometric determination of arsenic via nanogold formation in micellar medium. Indian Journal of Chemistry, 45A, 1178–1182.

    CAS  Google Scholar 

  • Pena-Pereira, F., Lavilla, I., & Bendicho, C. (2010). Colorimetric assay for determination of trimethylamine-nitrogen (TMA-N) in fish by combining headspace-single-drop microextraction and microvolume UV–vis spectrophotometry. Food Chemistry, 119, 402–407.

    Article  CAS  Google Scholar 

  • Reyes-Salas, E. O., Dosal-Gomez, M. A., Barcelo-Quintal, M. H., & Manzanilla-Cano, J. A. (2002). Simultaneous determination of nickel, cobalt, antimony, and arsenic in an aqueous sample by differential pulse polarography. Analytical Letters, 35, 123–133.

    Article  CAS  Google Scholar 

  • Shariati-Feizabadi, V., Yamini, Y., & Bahramifar, N. (2003). Headspace solvent microextraction and gas chromatographic determination of some polycyclic aromatic hydrocarbons in water samples. Analytica Chimica Acta, 489, 21–31.

    Article  CAS  Google Scholar 

  • Shen-Tu, C., Fan, Y., Hou, Y., Wang, K., & Zh, Y. (2008). Arsenic species analysis by ion chromatography–bianode electrochemical hydride generator–atomic fluorescence spectrometry. Journal of Chromatography A, 1213, 56–61.

    Article  Google Scholar 

  • Sun, Y. C., & Yang, J. Y. (1999). Simultaneous determination of arsenic(III, V), selenium(IV, VI), and antimony(III, V) in natural water by coprecipitation and neutron activation analysis. Analytica Chimica Acta, 395, 293–300.

    Article  CAS  Google Scholar 

  • Sun, H., Liu, X., & Miao, Y. (2011). Speciation analysis of trace inorganic arsenic in dietary supplements by slurry sampling hydride generation atomic absorption spectrometry. Food Analytical Methods, 4, 251–257.

    Article  Google Scholar 

  • Tyburska, A., Jankowski, K., & Rodzi, A. (2011). Determination of arsenic and selenium by hydride generation and headspace solid phase microextraction coupled with optical emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 66, 517–521.

    Article  CAS  Google Scholar 

  • Ulusoy, H. I., Akçay, M., Ulusoy, S., & Gürkan, R. (2011). Determination of ultra trace arsenic species in water samples by hydride generation atomic absorption spectrometry after cloud point extraction. Analytica Chimica Acta, 703, 137–144.

    Article  CAS  Google Scholar 

  • World Health Organization. (1988). WHO food additives, Series no. 24. Geneva: World Health Organization.

    Google Scholar 

  • Yu, C. H., Cai, Q. T., Guo, Z. X., Yang, Z. G., & Khoo, S. B. (2003). Inductively coupled plasma mass spectrometry study of the retention behavior of arsenic species on various solid phase extraction cartridges and its application in arsenic speciation. Spectrochimica Acta B, 58, 1335–1351.

    Article  Google Scholar 

  • Yuan, C. G., He, B., Gao, E. L., Lu, J. X., & Jiang, G. B. (2007). Evaluation of extraction methods for arsenic speciation in polluted soil and rotten ore by HPLC-HG-AFS analysis. Microchimica Acta, 159, 175–182.

    Article  CAS  Google Scholar 

  • Zhang, Y., Wang, W., Li, L., Huang, Y., & Cao, J. (2010). Eggshell membrane-based solid-phase extraction combined with hydride generation atomic fluorescence spectrometry for trace arsenic(V) in environmental water samples. Talanta, 80, 1907–1912.

    Article  CAS  Google Scholar 

  • Zhang, Y., Qiang, S., Sun, J., Song, M., & Hang, T. (2013). Liquid chromatography–hydride generation–atomic fluorescence spectrometry determination of arsenic species in dog plasma and its application to a pharmacokinetic study after oral administration of Realgar and Niu Huang Jie Du. Journal of Chromatography B, 917–918, 93–99.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ferdowsi University of Mashhad for the financial supports of this work under grant no. 21317 dated on 8 May 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narges Ashraf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemniaye-Torshizi, R., Ashraf, N. & Arbab-Zavar, M.H. Hydride generation coupled to microfunnel-assisted headspace liquid-phase microextraction for the determination of arsenic with UV–Vis spectrophotometry. Environ Monit Assess 186, 8381–8389 (2014). https://doi.org/10.1007/s10661-014-4011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-4011-3

Keywords

Navigation