Skip to main content

Advertisement

Log in

Interspecific and locational differences in metal levels in edible fish tissue from Saudi Arabia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Metal levels in fish have been extensively studied, but little data currently exists for the Middle East. We examined the levels of metals and metalloids (aluminum, arsenic, copper, manganese, selenium, zinc, and mercury) in the flesh of 13 fish species collected from three fishing sites and a local fish market in Jeddah, Saudi Arabia. We tested the following null hypotheses: (1) there are no interspecific differences in metal levels, (2) there are no differences in metal levels in fishes between market and fishing sites, (3) there are no size-related differences in metal levels, and (4) there are no differences in selenium:mercury molar ratio among different fish species. There were significant interspecific differences in concentrations for all metals. There was an order of magnitude difference in the levels of aluminum, arsenic, mercury, manganese, and selenium, indicating wide variation in potential effects on the fish themselves and on their predators. Fishes from Area II, close to a large commercial port, had the highest levels of arsenic, mercury, and selenium, followed by market fishes. Mercury was positively correlated with body size in 6 of the 13 fish species examined. Mercury was correlated positively with arsenic and selenium, but negatively with aluminum, cobalt, copper, manganese, and zinc. Selenium:mercury molar ratios varied significantly among species, with Carangoides bajad, Cephalopholis argus, Variola louti, and Ephinephelus tauvina having ratios below 10:1. These findings can be used in risk assessments, design of mercury reduction plans, development of fish advisories to protect public health, and future management decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdulaal, W. A. (2012). Large urban developments as the new driver for land development in Jeddah. Habitat International, 36, 36–46.

    Article  Google Scholar 

  • Agency for Toxic Substances and Disease Registry ATSDR. (1999). Toxicological Profile for Mercury. Agency for Toxic Substances and Disease Registry. Atlanta GA. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=1158tid=24. (Accessed July 27 2012).

  • Agency for Toxic Substances and Disease Registry ATSDR (2000). Toxicological Profile for Polychlorinated biphenyls (PCBs. Agency for Toxic Substances and Disease Registry. Atlanta GA. http://www.atsdr.cdc.gov/toxprofiles/tp17.pdf.

  • Agency for Toxic Substances and Disease Registry ATSDR. (2003). Toxicological profile for selenium. Agency for Toxic Substances and Disease Registry (ATSDR), Public Health Service, U.S. Atlanta: Department of Health and Human Services.

    Google Scholar 

  • Agency for Toxic Substances and Disease Registry ATSDR. (2004a). Toxicological profile for cobalt. Agency for Toxic Substances and Disease Registry (ATSDR), Public Health Service, U.S. Atlanta: Department of Health and Human Services.

    Google Scholar 

  • Agency for Toxic Substances and Disease Registry ATSDR. (2004b). Toxicological profile for copper. Agency for Toxic Substances and Disease Registry (ATSDR), Public Health Service, U.S. Atlanta: Department of Health and Human Services.

    Google Scholar 

  • Agency for Toxic Substances and Disease Registry ATSDR. (2007). Toxicological profile for cobalt. Agency for Toxic Substances and Disease Registry (ATSDR), Public Health Service, U.S. Atlanta: Department of Health and Human Services.

    Google Scholar 

  • Agency for Toxic Substances and Disease Registry ATSDR. (2008). Toxicological profile for aluminium. Agency for Toxic Substances and Disease Registry (ATSDR), Public Health Service, U.S. Atlanta: Department of Health and Human Services.

    Google Scholar 

  • Agency for Toxic Substances and Disease Registry ATSDR. (2009). Toxicological Profile—Vanadium. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=276&tid=50.

  • Agency for Toxic Substances and Disease Registry ATSDR (2012). Minimal Risk Levels database. http://www.atsdr.cdc.gov/mrls/index.asp.

  • Aljoufiea, M., Zuidgeest, M., Brussel, M., & van Maarseveen, M. (2013). Spatial–temporal analysis of urban growth and transportation in Jeddah City, Saudi Arabia. Cities, 31, 57–68.

  • Anderson, P. D., Wiener, J. B. (1995). Eating fish. In J. D. Graham, J. B. Wiener, (Eds.), editors. Risk versus risk: tradeoffs in protecting health and the environment (pp. 104–123). Cambridge, Mass: Harvard Univ. Press.

  • Ballin, U., Kruse, R., & Russel, H. S. (1994). Determination of total arsenic and speciation of arsenobetaine in marine fish by means of reaction-headspace gas chromatography utilizing flame-ionization detection and element specific spectrometric detection. Fresenius Journal of Analytical Chemistry, 352, 54–61.

    Article  Google Scholar 

  • Bariche, M. (2006). Diet of the Lessepsian fishes, Siganus rivulatus and S. luridus (Siganidae) in the eastern Mediterranean: a bibliographic analysis. Cybium, 30, 41–49.

    Google Scholar 

  • Basaham, A. S., Rifaat, A. E., El-Mamoney, M. H., & El Sayed, M. A. (2009). Re-evaluation of the impact of sewage disposal on coastal sediments of the Southern Corniche, Jeddah, Saudi Arabia. Journal of King Abdulaziz University Marine Science, 20, 109–126.

    Article  Google Scholar 

  • Berry, M. J., & Ralston, N. V. C. (2008). Mercury toxicity and the mitigating role of selenium. EcoHealth, 5, 456–459.

    Article  Google Scholar 

  • Beyrouty, P., & Chan, H. M. (2006). Co-consumption of selenium and vitamin E altered the reproductive and developmental toxicity of methylmercury in rats. Nereurotoxicology and Teratology, 28, 49–58.

    Article  CAS  Google Scholar 

  • Blaber, S. J. M., Milton, D. A., Rawlinson, N. J. F., Tiroba, G., & Nichols, P. V. (1990). Diets of lagoon fishes of the Solomon Islands and trophic effects of bait fishing on the subsurface. Fisheries Research, 8, 263–286.

    Article  Google Scholar 

  • Borlongan, I. G., & Coloso, R. M. (1993). Requirements of juvenile milkfish (Chanos chanos Forsskal) for essential amino acids. The Journal of Nutrition, 123, 125–132.

    CAS  Google Scholar 

  • Bouton, S. N., Frederick, P. C., Spalding, M. G., & McGill, H. (1999). Effects of chronic, low concentrations of dietary methylmercury on the behavior of juvenile Great Egrets. Environmental Toxicology and Chemistry, 18, 1934–1939.

    Article  CAS  Google Scholar 

  • Branco, V., Canario, J., Holmgren, A., & Carvalho, C. (2011). Inhibition of the thioredoxin system in the brain and liver of zebra-seabreams exposed to waterborne methylmercury. Toxicology and Applied Pharmacology, 25, 95–103.

    Article  Google Scholar 

  • Bu-Olayan, A. H., & Al-Yakoob, S. (1998). Lead, nickel and vanadium in seafood: an exposure assessment for Kuwaiti consumers. Science for the Total Environment, 223, 81–86.

    Article  CAS  Google Scholar 

  • Burger, J., & Gochfeld, M. (2011a). Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season. Science for the Total Environment, 409, 1418–1429.

    Article  CAS  Google Scholar 

  • Burger, J., & Gochfeld, M. (2011b). Conceptual environmental justice model for evaluating chemical pathways of exposure in low-income, minority, Native American, and other unique exposure populations. American Journal of Public Health, 101, S64–S80.

    Article  Google Scholar 

  • Burger, J., & Gochfeld, M. (2012). Selenium and mercury molar ratios in saltwater fish from New Jersey: individual and species variability complicate use in human health fish consumption advisories. Environmental Research, 114, 12–23.

    Article  CAS  Google Scholar 

  • Burger, J., Cooper, K., & Gochfeld, M. (1992). Exposure assessment for heavy metal ingestion from a sport fish in Puerto Rico: estimating risk for local fishermen. Journal of Toxicology and Environmental Health, 36, 355–365.

    Article  CAS  Google Scholar 

  • Burger, J. W., Stephens, C. S., Boring, C. S., Kuklinski, M., Gibbons, J. W., & Gochfeld, M. (1999). Factors in exposure assessment: ethnic and socioeconomic differences in fishing and consumption of fish caught along the Savannah River. Risk Analysis, 19, 427–438.

    CAS  Google Scholar 

  • Burger, J., Gaines, K. F., & Gochfeld, M. (2001a). Ethnic differences in risk from mercury among Savannah River fishermen. Risk Analysis, 21, 533–544.

    Article  CAS  Google Scholar 

  • Burger, J., Gaines, K. F., Boring, C. S., Stephens, W. L., Jr., Snodgrass, J., & Gochfeld, M. (2001b). Mercury and selenium in fish from the Savannah River: species, trophic level, and locational differences. Environmental Research, 87, 108–118.

    Article  CAS  Google Scholar 

  • Cabanero, A. I., Madrid, Y., & Camara, C. (2007). Mercury-selenium species ratio in representative fish samples and their bioaccessibility by an in vitro digestion method. Biological Trace Elemental Research, 119, 195–211.

    Article  CAS  Google Scholar 

  • Camargo, M. M., Fernandes, M. N., & Martinez, C. B. (2009). How aluminium exposure promotes osmoregulatory disturbances in the neotropical freshwater fish Prochilus lineatus. Aquatic Toxicology, 90, 40–46.

    Article  Google Scholar 

  • Chew, C.M. (1996). Toxicity and exposure concerns related to arsenic in seafood: an arsenic literature review for risk assessments U.S. Environmental Protection Agency, Region 10, 1996 51pp.

  • Choi, A. L., Budtz-Jorgensen, E., Jorgensen, P. J., Salonen, J. T., Tuomainen, T., Murata, K., et al. (2009). Methylmercury exposure and adverse cardiovascular effects in Faroese whaling men. Environmental Health Perspectives, 117, 367–372.

    Article  CAS  Google Scholar 

  • CRC (2012). Handbook of Chemistry and Physics. William M. Haynes (ed.). 93rd Edition, CRC Press, Boca raton, Florida.

  • Dang, F., & Wang, W. (2011). Antagonistic interaction of mercury and selenium in a marine fish is dependent on their chemical species. Environmental Science and Technology, 45, 3116–3122.

    Article  CAS  Google Scholar 

  • Daviglus, M., Sheeshka, J., & Murkin, E. (2002). Health benefits from eating fish. Comments on Toxicology, 8, 345–374.

    Article  Google Scholar 

  • Dierking, J., Williams, I. D., & Walsh, W. J. (2009). Diet composition and prey selection of the introduced grouper species peacock hind (Cephalopholis argus) in Hawaii. Fishery Bulletin, 107, 464–476.

    Google Scholar 

  • Downs, S. G., Macleod, C. L., & Lester, J. N. (1998). Mercury precipitation and its relation to bioaccumulation in fish: a literature review. Water, Air, and Soil Pollution, 108, 149–187.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Abbot, M., Bullock, R., Jansen, J., Leonard, D., Lindberg, S., et al. (2006). Airsheds and watersheds. In R. Harris, D. P. Krabbenhoft, R. Mason, M. W. Murray, R. Reash, & T. Saltman (Eds.), Ecosystem responses to mercury contamination (pp. 12–46). Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Eisler, R. (1987). Mercury hazards to fish, wildlife and invertebrates: a synoptic review. Biological report 85 (1.10). Washington D. C: United States Fish and Wildlife Service.

    Google Scholar 

  • Eisler, R. (1988). Lead hazards to fish, wildlife and invertebrates: a synoptic review. Biological report 85 (1.4). Washington D. C: United States Fish and Wildlife Service.

    Google Scholar 

  • Eisler, R. (1994). A review of arsenic hazards to plants and animals with emphasis on fishery and wildlife resources. In J. O. Nriagu (Ed.), Arsenic in the environment part, II. (pp. 185–259) New York, New York: Wiley.

  • El-Shafie, M. (2010). Sustainability versus mega urban development projects. International Journal of Civil and Environmental Engineering, 10, 1–7.

    Google Scholar 

  • Engström, E., Stenberg, A., Senioukh, S., Edelbro, R., Baxter, D. C., & Rodushkin, I. (2004). Multi-elemental characterization of soft biological tissues by inductively coupled plasma–sector field mass spectrometry. Analytica Chimica Acta, 521, 123–135.

    Article  Google Scholar 

  • Environmental Protection Agency, EPA IRIS (1993). Arsenic, inorganic (CASRN 7440-38-2). http://www.epa.gov/iris/subst/0278.htm.

  • Environmental Protection Agency, EPA IRIS (1996). Manganese CASRN 7439-96-5. http://www.epa.gov/iris/subst/0373.htm. Accessed 18 Jul 2012.

  • European Commission. (2008). Commission regulations No. 629–2008 of 2 July 2008 amending regulation (EC) No 188–2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of EU, 51, 4–10.

    Google Scholar 

  • Fishbase (2013). Information. www.fishbase.org. Accessed May 3 2011.

  • Fitzgerald, W. F., & Mason, R. P. (1996). The global mercury cycle: oceanic and atmospheric aspects. In W. Baeyens, R. Ebinghaus, & O. Vasiliev (Eds.), Global and regional mercury cycles: sources, forces and mass balances (pp. 85–108). Dordrecht, the Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Freire, M. C., Ramos, R., Lopez-Espinosa, M. J., Diez, S., Vioque, J., Ballester, F., et al. (2010). Hair mercury levels, fish consumption, and cognitive development in preschool children from Granada, Spain. Environmental Research, 110, 96–104.

  • Ganther, H. E., Goudie, C., Sunde, M. L., Kopecky, M. J., & Wagner, P. (1972). Selenium: relation to decreased toxicity of methylmercury added to diets containing tuna. Science, 175, 1122–1124.

    Article  CAS  Google Scholar 

  • Grandcourt, E. M., Abdessalaam, T. Z. A., Francis, F., & Shamsi, A. A. (2004). Population biology and assessment of representatives of the family Carangidae Carangoides bajad and Gnathanodon speciosus (Forsskal, 1775), in the Southern Arabian Gulf. Fisheries Research, 69, 331–341.

    Google Scholar 

  • Greene, R., & Crecelius, E. (2006). Total and inorganic arsenic in Mid-Atlantic marine fish and shellfish and implications for fish advisories. Integrated Environmental Assessment and Management, 2, 344–354.

    Article  CAS  Google Scholar 

  • Heinz, G. H., Hoffman, D. J., Klimstra, J. D., Stebbins, K. R., Kondrad, S. L., & Erwin, C. A. (2009). Species differences in the sensitivity of avian embryos to methylmercury. Archives of Environmental Contamination and Toxicology, 56, 129–138.

    Article  CAS  Google Scholar 

  • Hightower, J. M., & Moore, D. (2003). Mercury levels in high-end consumers of fish. Environmental Health Perspectives, 111, 604–608.

    Article  CAS  Google Scholar 

  • Hites, R. A., Foran, J. A., Carpenter, D. A., Hamilton, M. C., Knuth, B. S., & Schwager, S. J. (2004). Global assessment of organic contaminants in farmed salmon. Science, 303, 226–229.

    Article  CAS  Google Scholar 

  • IOM. (1991). Seafood Safety, Institute of Medicine (IOM). Washington, D. C.: National Academy Press.

    Google Scholar 

  • IOM. (2006). Seafood choices: balancing benefits and risks. Institute of Medicine (IOM). Washington, D. C.: National Academy Press.

    Google Scholar 

  • JECFA (2003). Joint FAO/WHO Expert Committee on Food Additives (JECFA). Available at: www.who.int/pcs/jecfa/jecra-htm (accessed March 2013).

  • JECFA (2011a). Evaluation of certain contaminants in food. Seventy-second report of the Joint FAO/WHO Expert Committee on Food Additives. Available at: http://whqlibdoc.who.int/trs/WHO_TRS_959_eng.pdf (accessed on 22 July 2012).

  • JECFA (2011b). Evaluation of certain food additives and contaminants. Seventy-fourth report of the Joint FAO/WHO Expert Committee on Food Additives. Available at: http://whqlibdoc.who.int/trs/WHO_TRS_966_eng.pdf (accessed on 22 July 2012).

  • Jewett, S. C., Zhang, X., Naidu, A. S., Kelley, J. J., Dasher, D., & Duffy, L. K. (2003). Comparison of mercury and methylmercury in northern pike and Arctic grayling from western Alaskan rivers. Chemosphere, 50, 386–392.

    Article  Google Scholar 

  • Lange, T. R., Royals, H. E., & Connor, L. L. (1994). Mercury accumulation in largemouth bass (Micropterus salmoides) in a Florida lake. Environmental Contamination and Toxicology, l27, 466–471.

    Google Scholar 

  • Lansens, P., Leermakers, M., & Vaeyens, W. (1991). Determination of methylmercury in fish by headspace-gas chromatography with microwave-induced-plasma detections. Water, Air, and Soil Polluttion, 56, 103–115.

    Article  CAS  Google Scholar 

  • Lavanya, S., Ramesh, M., Kavitha, C., Malavizhi, A. (2011). Hematological, biochemcal and ionregulatory responses of Indian major carp Catla catla during chronic sublethal exposure to inorganic arsenic. Chemosphere, 82, 977–985.

  • Lawrence, J. F., Michalik, P., Tarn, G., & Conacher, H. B. S. (1986). Identification of arsenobetaine and arsenocholine in Canadian fish and shellfish by high-performance liquid chromatography with atomic absorption detection and confirmation by fast atom bombardment mass spectrometry. Journal of Agricultural and Food Chemistry, 34, 315–319.

    Article  CAS  Google Scholar 

  • Leufroy, A., Noël, L., Beauchemin, D., & Guérin, T. (2012). Bioaccessibility of total arsenic and arsenic species in seafood as determined by a continuous online leaching method. Analytical and Bioanalytical Chemistry, 402, 2849–2859.

    Article  CAS  Google Scholar 

  • Lemly, D.A. (1993). Guidelines for evaluating selenium data from aquatic monitoring and assessment studies. Environmental Monitoring and Assessment, 28, 83–100.

  • Liclstadt, C., & Reiti, T. (2002). Investigation of the juvenile milkfish (Chanos chanos Forsskal) in brackish water lagoon on South Tarawa, Kiribati. Verhandlungen der Gesellschaft fur Icthyologie Band, 3, 37–43.

    Google Scholar 

  • Lindh, U., & Johansson, E. (1987). Protective effects of selenium against mercury toxicity as studied in the rat liver and kidney by nuclear analytical techniques. Biological Trace Element Research, 12, 109–120.

    Article  CAS  Google Scholar 

  • Lorenzana, R. M., Yeow, A. Y., Colman, J. T., Cappell, L. L., & Shoudhury, H. (2009). Arsenic in seafood: speciation issues for human health risk assessment. Human and Ecological Risk Assessment, 15, 185–200.

    Article  CAS  Google Scholar 

  • Montiero, L. R., Costa, V., Furness, R. W., & Santos, R. S. (1996). Mercury concentrations in prey fish indicate enhanced bioaccumulation in mesopelagic environments. Marine Ecological Progress Series, 141, 21–25.

    Article  Google Scholar 

  • Morel, F. M., Kraepiel, M. A., & Amyot, M. (1998). The chemical cycle and bioaccumulation of mercury. Annual Review of Ecological Systems, 29, 543–566.

    Article  Google Scholar 

  • Mozaffarian, D. (2009). Fish, mercury, selenium and cardiovascular risk: current evidence and unanswered questions. International Journal of Environmental Research in Public Health, 6, 1894–1916.

    Article  CAS  Google Scholar 

  • Mozaffarian, D., & Rimm, E. B. (2006). Fish intake, contaminants, and human health: evaluating the risks and the benefits. Journal of the American Medical Association, 296, 1885–1899.

    Article  CAS  Google Scholar 

  • Mueezzinoglu, A. (2003). A review of environmental consideration on gold mining and production. Critical Reviews in Environmental Science and Technology, 33, 45–71.

    Article  CAS  Google Scholar 

  • Nichols, J. W. (2001). Use of indicators in ecological risk assessment for persistent, bioaccumulative toxicants. Human and Ecological Risk Assessment, 7, 1043–1057.

    Article  CAS  Google Scholar 

  • NOAA (2004). Seafood consumption rose again in 2003. National Oceanographic and Atmospheric Administration (NOAA) Magazine, U.S. Commerce Department. Available at: hhtp://www.noaanews.noaa.gov/stories2004/s2322.htm (accessed 10 March 2005).

  • NRC. (2000). Toxicological effects of methylmercury. National Research Council (NRC). Washington, D. C: National Academy Press.

    Google Scholar 

  • NRC. (2011). National Research Council (NRC). Washington, D. C.: National Academy Press.

    Google Scholar 

  • Ohlendorf, H., Hothem, R. L., Bunck, C. M., Aldrich, T. W., Moore J. R. (1986). Relationship between selenium concentrations and avian reproduction. Transactions of the North American Wildlife and Natural Resources Conference, 51, 330–342.

  • Ohlendorf, H., Hothem, R. L., Walsh, D. (1989). Nest success, cause-specific nest failures and hatchability of aquatic birds at selenium contaminated Kesterson reservoir and a reference site. Condor, 91, 787–796.

  • Oken, E., Radesky, J. S., Wright, R. O., Bellinger, D. C., Amarasiriwardena, C. J., Kleinman, K. P., et al. (2008). Maternal fish intake during pregnancy, blood mercury levels, and child cognition at age 3 years in a US cohort. American Journal of Epidemiology, 167, 1171–1181.

    Article  Google Scholar 

  • Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., & Wilson, S. (2006). Global anthropogenic mercury emissions inventory for 2000. Atmosphere and Environment, 40, 4048–4063.

    Article  CAS  Google Scholar 

  • Park, K., & Mozaffarian, D. (2010). Omega-3 fatty acids, mercury, and selenium in fish and the risk of cardiovascular diseases. Current Atherosclerosis Report, 12, 414–422.

    Article  CAS  Google Scholar 

  • Patterson, J. (2002). Introduction—comparative dietary risk: balance the risks and benefits of fish consumption. Comments in Toxicology, 8, 337–344.

    Article  Google Scholar 

  • Peshut, P. J., Morrison, R. J., & Brooks, B. A. (2007). Arsenic speciation in marine fish and shellfish from American Samoa. Chemosphere, 71, 484–492.

    Article  Google Scholar 

  • Pinheiro, M. C. N., de Nascimento, J. L. M., Silveira, L. C. L., daRocha, J. B. T., & Aschner, M. (2009). Mercury and selenium—a review on aspects related to the health of human populations in the Amazon. Environmental Bioindicatators, 4, 222–245.

    Article  CAS  Google Scholar 

  • Ralston, N. V. C. (2008). Selenium health benefit values as seafood safety criteria. EcoHealth, 5, 442–455.

    Article  Google Scholar 

  • Ralston, N. V. C. (2009). Introduction to 2nd issue on special topic: selenium and mercury as interactive environmental indicators. Environmental Bioindicators, 4, 286–290.

    Article  CAS  Google Scholar 

  • Ralston, N. V., & Raymond, L. J. (2010). Dietary selenium’s protective effects against methylmercury toxicity. Toxicology, 278, 112–123.

    Article  CAS  Google Scholar 

  • Ralston, N. V. C., Ralston, C. R., Blackwell, J. L., III, & Raymond, L. J. (2008). Dietary and tissue selenium in relation to methylmercury toxicity. Neurotoxicology, 29, 802–811.

    Article  CAS  Google Scholar 

  • Ramel, A., Martinez, J. A., Kiely, M., Bandarra, N. M., & Thorsdottir, I. (2010). Moderate consumption of fatty fish reduces diastolic blood pressure in overweight and obese European young adults during energy restriction. Nutrition, 26, 168–174.

    Article  CAS  Google Scholar 

  • Randall, J. E. & Brock, V. E. (1960). Observations on the ecology of Ephinepheline and Lutjanid fishes of the Society Islands, with emphasis on food habits. Transactions of the American Fisheries Society 89, 9−16.

  • Rice, G., Swartout, J., Mahaffey, K., & Schoeny, R. (2000). Derivation of US EPA’s oral reference dose (RfD) for methylmercury. Drug and Chemical Toxicology, 23, 41–54.

    Article  CAS  Google Scholar 

  • Rodushkin, I., Nordlund, P., Engström, E., & Baxter, D. C. (2005). Improved multi-elemental analyses by inductively coupled plasma-sector field mass spectrometry through methane addition to the plasma. Journal of Analytical Atomic Spectrometry, 20, 1250–1255.

    Article  CAS  Google Scholar 

  • Rodushkin, I., Engström, E., & Baxter, D. C. (2010). Sources of contamination and remedial strategies in the multi-elemental trace analysis laboratory. Analytical and Bioanalytical Chemistry, 396, 365–377.

    Article  CAS  Google Scholar 

  • Rosseland, B. O., Eidhuset, T. D., & Staurnes, M. (1990). Environmental effects of aluminum. Environmental and Geochemical Health, 12, 17–27.

    Article  CAS  Google Scholar 

  • SAS. (2005). Statistical analysis. Cary, North Carolina: Statistical Analysis Systems (SAS).

    Google Scholar 

  • Satoh, H., Yasuda, N., & Shimai, S. (1985). Development of reflexes in neonatal mice prenatally exposed to methylmercury and selenite. Toxicology Letters, 25, 199–203.

    Article  CAS  Google Scholar 

  • Saudi Port Authroity, 2012. Annual Statistics Year 2012 Jeddah Islamic Port. Saudi Port Authority, Riyadh, Kingdom of Saudi Arabia. pp 25.

  • Scudder, B. C., Chaser, L. C., Wentz, D. A., Bauch, N. J., Brigham, M. E., Moran, P. W., et al. (2009). Mercury in fish, bed sediment, and water from streams across the United States, 1998–2005 (p. 74). Reston, Virginia: United States Departtment of Interior, Report 2009–5109.

    Google Scholar 

  • Seppanen, D., Soininen, P., Salonen, J. T., Lotjonen, S., & Laatikainen, R. (2004). Does mercury promote lipid peroxidation? An in vitro study concerning mercury, copper, and iron in peroxidation of low-density lipoprotein. Biological Trace Element Research, 101, 117–132.

    Article  Google Scholar 

  • SFWMD (2007). South Florida Environmental Report: 2007. Redfield, G. (ed.), South Florida Water Management District (SFWMD), West Palm Beach, Florida.

  • Sloth, J. J., Larsen, E. H., Julshamn, K. (2005). Survey of inorganic arsenic in marine animals and marine certified reference materials by anion exchange high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Journal of Agricultural Food and Chemistry 27; 6011–6018.

  • Spalding, M. G., Frederick, P. C., McGill, H. C., Bouton, S. N., & McDowell, L. R. (2000a). Methylmercury accumulation in tissues and its effects on growth and appetite in captive Great Egrets. Journal of Wildlife Diseases, 36, 411–411.

    Article  CAS  Google Scholar 

  • Spalding, M. G., Frederick, P. C., McGill, H. C., Bouton, S. N., Richey, L. J., Schumacher, I. M., et al. (2000b). Journal of Wildlife Diseases, 36, 423–435.

    Article  CAS  Google Scholar 

  • Takezaki, T., Inoue, M., Kataoka, H., Ikeda, S., Yoshida, M., Ohashi, Y., et al. (2003). Diet and lung cancer risk from a 14-year population-based prospective study in Japan: with special reference to fish consumption. Nutrition and Cancer, 45, 160–167.

    Article  Google Scholar 

  • Thompson, D. R. (1996). Mercury in birds and terrestrial mammals. In W. N.Beyer, G. H Heinz, A. W., Redmond-Norwood (Eds.), Environmental Contaminants in Wildlife: Interpreting Tissue Concentrations (pp 341–356), Lewis Publishers, Boca Raton, Florida.

  • USEPA (1991a). Risk Characterization web page. United States Environmental Protection Agency (USEPA), Washington, D. C. Available at: http://www.epa.gov/region8/r8risk/hh_risk.html (accessed on 25 July 2012).

  • USEPA IRIS (1991b). Copper (CASRN 7440-50-8). United States Environmental protection Agency (USEPA), Integrated Risk Information System (IRIS), Washington, D. C. Available at: http://www.epa.gov/iris/subst/0368.htm (accessed on 22 July 2012).

  • USEPA IRIS (1991c). Selenium and Compounds (CASRN 7782-49-2). United States Environmental protection Agency (USEPA), Integrated Risk Information System (IRIS), Washington, D. C. Available at: http://www.epa.gov/iris/subst/0472.htm (accessed on 22 July 2012).

  • USEPA. (1997). Mercury study report to congress. EPA-452/R-97-004. Washington, D. C: United States Environmental Protection Agency (USEPA).

    Google Scholar 

  • USEPA (2005) Guidelines for Carcinogen Risk Assessment 630/P-03/001F. United States Environmental protection Agency (USEPA), Washington, D. C. Available at: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=116283.

  • USEPA (2008). Concepts, methods, and data sources for cumulative health risk assessment of multiple chemicals, exposures and effects: a resource document. United States Environmental protection Agency (USEPA), Washington, D. C. Available at: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=190187.

  • USFDA (2001). FDA consumer advisory. United States Food and Drug Administration (USFDA), Washington, D. C. Available: http//www.fda.gov/bbs/topics/ANSWERS/2000/advisory.html (accessed 1 December 2012).

  • USFDA (2003). FDA consumer advisory. United States Food and Drug Administration (USFDA), Washington, D. C. Available at: http//www.fda.gov/bbs/topics/ANSWERS/2000/advisory.html (accessed 1 January 2004).

  • USFDA (2005). Mercury Levels in Commercial Fish and Shellfish. United States Food and Drug Administration (USFDA), Washington, D. C. Available at: http//www.fda.gov/bbs/topics/ANSWERS/2000/advisory.html (accessed 1 January 2011).

  • Virtanen, J. K., Mozaffarian, D., Chiuve, S. E., & Rimm, E. B. (2008). Fish consumption and risk of major chronic disease in men. American Journal of Clinical Nutrition, 88, 1618–1625.

    Article  CAS  Google Scholar 

  • Watanabe, C. (2002). Modification of mercury toxicity by selenium: practical importance. Tohoku Journal of Experimental Medicine, 196, 71–77.

    Article  CAS  Google Scholar 

  • Watanabe, C., Yoshida, K., Kasanuma, Y., & Satoh, H. (1999). In utero methylmercury exposure differentially affects the activities of selenoenzymes in the fetal mouse brain. Environmental Research, 80, 208–214.

    Article  CAS  Google Scholar 

  • Weber, D. N., Dingel, W. M. (1997). Alterations in neurobehavioral responses in fishes exposed to lead and lead-chelating agents. American Zoology, 37, 354–362.

  • WHO. (1985). Guidelines for the study of dietary intakes of chemical contaminants (p. 104). Geneva, Switzerland: World Health Organization (WHO) Offset Publication No. 7.

    Google Scholar 

  • WHO. (1989). Mercury—environmental aspects. Geneva, Switzerland: World Health Organization (WHO).

    Google Scholar 

  • WHO. (1990). International programme on chemical safety—methylmercury. Environmental Health Criteria, 101, 42–58.

    Google Scholar 

  • WHO. (2010). Aluminium in drinking water. Background document for development of WHO Guidelines for drinking-water quality. WHO/HSE/WSH/10.01/13. Geneva, Switzerland: World Health Organization (WHO).

    Google Scholar 

  • Wright, A., Dalzell, P. J., & Richards, A. J. (1986). Some aspects of the biology of the red bass, Lutjanus bohar (Forsskal), from the Tigak Islands, Papua New Guinea. Journal of Fish Biology, 28, 533–544.

    Article  Google Scholar 

  • Zhang, W., Huang, L., & Wang, W. X. (2012). Biotransformation and detoxification of inorganic arsenic in a marine juvenile fish Terapon jarbua after waterborne and dietborne exposure. Journal of Hazardous Materials, 221–222, 162–169.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Saudi Arabian Ministry of Agriculture (MoA) to KAUST (KAUST/MoA 228211), with additional funds to JB and MG from EOHSI, the Consortium for Risk Evaluation with Stakeholder Participation (Department of Energy, DE-FC01-86EW07053), NIEHS (P30ES005022), and Rutgers University. We thank the KAUST Administration and CMOR staff for the invaluable support and assistance throughout the project implementation. We also thank the many people who have discussed these topics with us, or who have helped in the research, including R. Schoeny, A. Stern, D. Carpenter, N. Ralston, M. Lemiré, D. Mergler, S. Silbernagel, E. Silbergeld, E. Groth, C. Chess, C. Powers, D. Kosson, J. Clarke, C. Jeitner, T. Pittfield, and M. Donio. The views and opinions expressed in this paper are those of the authors, and do not represent the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Burger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burger, J., Gochfeld, M., Batang, Z. et al. Interspecific and locational differences in metal levels in edible fish tissue from Saudi Arabia. Environ Monit Assess 186, 6721–6746 (2014). https://doi.org/10.1007/s10661-014-3885-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3885-4

Keywords

Navigation