Environmental Monitoring and Assessment

, Volume 186, Issue 9, pp 5865–5881 | Cite as

Seaweeds as bioindicators of heavy metals off a hot spot area on the Egyptian Mediterranean Coast during 2008–2010

  • N. G. Shams El-Din
  • L. I. Mohamedein
  • Kh. M. El-Moselhy


Concentrations of Cu, Zn, Cd, Pb, Ni, Co, Fe, Mn, and Hg were measured successively in water, sediments, and six macroalgal species belonging to three algal classes during 3 years (2008–2010) from Abu Qir Bay, Alexandria, Egypt: Chlorophyceae (Enteromorpha compressa, Ulva fasciata), Phaeophyceae (Padina boryana), and Rhodophyceae (Jania rubens, Hypnea musciformis, Pterocladia capillacea). The study aimed to assess the bioaccumulation potential of the seaweeds, as well as to evaluate the extent of heavy metal contamination in the selected study site. Metals were analyzed using atomic absorption spectrophotometry coupled with MH-10 hydride system. The obtained data showed that the highest mean concentrations of Cu, Zn, Fe, and Mn were recorded in E. compressa; Cd, Ni, and Hg exhibited their highest mean concentrations in P. boryana, while Pb and Co were found in J. rubens. Abundance of the heavy metals in the algal species was as follow: Fe > Mn > Zn > Pb > Ni > Co > Cu > Cd > Hg. E. compressa showed the maximum metal pollution index (MPI) which was 11.55. Bioconcentration factor (BCF) for the metals in algae was relatively high with a maximum value for Mn. The Tomlinson pollution load index (PLI) values for the recorded algal species were low, which ranged between 1.00 in P. boryana and 2.72 in E. compressa. Enrichment factors for sediments were low fluctuating between 0.43 for Hg to 2.33 for Mn. Accordingly, the green alga E. compressa, brown alga P. boryana, and red alga J. rubens can be nominated as bioindicators. Based on MPI and PLI indices, Abu Qir Bay in the present study is considered as low-contaminated area.


Heavy metals Algae Water Sediments Abu Qir Bay Mediterranean 


  1. Abdallah, M. A. M. (2007). Chemical composition and trace element concentration of marine algae Enteromorpha spp as potential food source. In: Proceedings of the third Mediterranean symposium on marine vegetation (Marseilles, 27-29 March 2007). C. Pergent-Martini, S. El Asmi, C. Le Ravallec edits., RAC/SPA publ., Tunis: 225-228.Google Scholar
  2. Abdallah, M. A. M., & Abdallah, A. M. A. (2008). Biomonitoring study of heavy metals in biota and sediments in the south eastern coast of Mediterranean Sea Egypt. Environmental Monitoring and Assessment, 146, 139–145.CrossRefGoogle Scholar
  3. Abdallah, M. A. M. (2008). Chemical composition, mineral content and heavy metals of some marine seaweeds from Alexandria coast. Egyptian Journal of Aquatic Research, 34(2), 84–94.Google Scholar
  4. Abdallah, M. A. M. (2010). Heavy metal monitoring in marine seaweeds from the southeastern Mediterranean Sea off the Egyptian coast, 2006-2009. United Nations Environment Programme Mediterranean Action Plan, Regional Activity Centre for Specially Protected Areas. Proceedings of the 4th Mediterranean Symposium on marine vegetation, Yasmine-Hammamet, 2-4 December 2010, pp:11-16.Google Scholar
  5. Abdel Ghani, S. A. H., El Naggar, M. F., El Zokm, G. M., Shakweer, L., & Okbah, M. A. (2010). Concentration level of some dissolved trace metals in Mediterranean coastal water NW-Egypt. Egyptian Journal of Aquatic Research, 36(4), 509–522.Google Scholar
  6. Adeloju, S. B., Dhindsa, H. S., & Tandon, R. K. (1994). Evaluation of some wet decomposition methods for mercury determination in biological and environmental materials by cold vapour atomic absorption spectrometry. Analytical Chemistry Acta, 285, 359–364.CrossRefGoogle Scholar
  7. Ahdy, H. H., Mohammed, T. A., & Abdallah, A. M. A. (2006). Multi-elements content in some marine seaweeds from Egyptian Red Sea coast. Egyptian Journal of Aquatic Research, 32, 1–15. special issue.Google Scholar
  8. Akcali, I., & Kucuksezgin, F. (2011). A biomonitoring study: heavy metals in macroalgae from eastern Aegean coastal areas. Marine Pollution Bulletin, 62, 637–645.CrossRefGoogle Scholar
  9. Aleem, A. A. (1993). The marine algae of Alexandria, Egypt.139 pp.Google Scholar
  10. Anastasakis, K., Ross, A. B., & Jones, J. M. (2011). Pyrolysis behaviour of the main carbohydrates of brown macro-algae. Fuel, 90, 598–607.CrossRefGoogle Scholar
  11. Angelidis, M. O., & Aloupi, M. (2001). Geochemical study of coastal sediments influenced by river-transported pollution: southern Evoikos Gulf. Marine Pollution Bulletin, 40(1), 77–82.CrossRefGoogle Scholar
  12. Angula, E. (1996). The Tomlinson pollution index applied to heavy metal, Mussel-Watch data: a useful index to assess coastal pollution. Science of the Total Environment, 187, 19–56.CrossRefGoogle Scholar
  13. APHA. (1989). “AWWA and WPCF standard methods for the examination of water and wastewater” 17 th ed., APHA, Washington.Google Scholar
  14. Birth, G. (2003). A scheme for assessing human impacts on coastal aquatic environments using sediments. In : Woodcoffe, C.D., Furnes, R.A. (Eds.). Coastal GIS, 2003. Wollongong University papers in Center for Maritime Policy, 14, Australia.Google Scholar
  15. Bhowmik, D., Chiranjib, K. P., & Kumar, S. (2010). A potential medicinal importance of zinc in human health and chronic disease. Review article. International Journal of Pharmaceutical and Biomedical Sciences, 1(1), 5–11.Google Scholar
  16. Black, W. A. P., & Mitchell, R. L. (1952). Trace elements in the common brown algae and in seawater. Journal of Marine Biology Assessment, UK, 30, 575–584.CrossRefGoogle Scholar
  17. Brewer, P. G., Spencer, D. W., & Smith, C. L. (1969). Determination of trace metals in seawater by atomic absorption spectroscopy. American Society for Testing Materials Tech. Publication, 443, 70–77.Google Scholar
  18. Bryan, G. W. (1971). The effects of heavy metals (other than mercury) on marine and estuarine organisms. The Royal society, London, series B, 177:389 - 410.Google Scholar
  19. Camargo, J. A. (2002). Contribution of Spanish-American silver mines (1570-1820) to the present high mercury concentrations in the global environment: a review. Chemosphere, 48, 51–57.CrossRefGoogle Scholar
  20. Carlson, L., & Erlandsson, B. (1991). Seasonal variation of radionuclides in Fucus vesiculosus L. from the oresund. Southern Sweden. Environmental Pollution, 73, 53–70.CrossRefGoogle Scholar
  21. Chaudhuri, A., Mitra, M., Havrilla, C., Waguespack, Y., & Schwarz, J. (2007). Heavy metal biomonitoring by seaweeds on the Delmarva, Peninsula, east coast of the USA. Botanica Marina, 50, 151–158.CrossRefGoogle Scholar
  22. Chen, C. W., Kao, C. M., Chen, C. F., & Dong, C. D. (2007). Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere, 66, 1431–1440.CrossRefGoogle Scholar
  23. Davis, T. A., Voleskya, B., & Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 37, 4311–4330.CrossRefGoogle Scholar
  24. Denton, G. R. W.; Kelly, W. C.; Wood, H. R. & Wen, Y. (2006). Impact of metal enriched leachate from ordot dump on the heavy metal status of biotic and abiotic components of Pago Bay. Water and Environmental Research Institute (WERI) Technical Report No. 113, University of Guam, Mangilao, Guam, 63 pp.Google Scholar
  25. EL-Deeb, M. K., & Aboul-Naga, W. M. (2002). Trace metals: Fe, Zn, Mn, Cu, Ni and Cr in macroalgae from Alexandria coast. Bulletin Facts Science, 42(1,2), 51–60. University of Alexandria.Google Scholar
  26. El-Moselhy, Kh. M., & Gabal, M. N. (2004). Trace metals in water, sediments and marine organisms from the northern part of the Gulf of Suez, Red Sea. Journal of Marine Systems, 46, 39–46.CrossRefGoogle Scholar
  27. EL-Moselhy, Kh. M., & Abd El-Azim, H. (2005). Heavy metals content and grain size of sediments from Suez Bay, Red Sea, Egypt. Egyptian Journal of Aquatic Research, 31(2), 224–238.Google Scholar
  28. EL-Moselhy, Kh. M.; Amer, A. M. & Shams El Din, N. G. (2006). Trace metals concentration in water, sediments and macroalgae species in the intertidal zone of Suez Bay, Red Sea, Egypt. International Journal Oce. and Oceano. 1 (3) in press.Google Scholar
  29. EL-Moselhy, Kh. M., & Hamed, M. A. (2006). Impact of land-based activities on hydrographic conditions and levels of heavy metals in water and sediments along the Mediterranean coast of Egypt. Egyptian Journal of Aquatic Research, 32(2), 63–82.Google Scholar
  30. El-Nady, F. E. (1996). Heavy metal pollution problems in the southeastern Mediterranean waters of Alexandria, Egypt. Proceeding of the 6th international conference on environmental protection is a must, NIOF, VEA, ISA and SFD, Alexandria, Egypt, 21-31 May: 364-381.Google Scholar
  31. EL-Naggar, M. E. E. & Al-Amoudi, O. A. (1989). Heavy metal levels in several species of marine algae from the Red Sea of Saudi Arabia. J.K.A.U.: Science, 1:5-13.Google Scholar
  32. EL-Naggar, M. F. (2009). Heavy metals accumulation in the biotic environment of the Bitter to the Mediterranean Sea, west of Alexandria. Egyptian Journal of Aquatic Research, 31(special issue), 120–129.Google Scholar
  33. El-Nemr, A., Khaled, A., & El-Sikaily, A. (2012). Heavy metal contamination in the seaweeds of Abu-Qir, Egypt. Journal of Blue Biotechnology, 1(2), 273–287.Google Scholar
  34. EL-Sarraf, W. M. (1995). Heavy metal content in some marine algae from Alexandria, Egypt. Bulletin Facts Science, 35(2), 475–484. Alexandria University.Google Scholar
  35. EL-Sayed, M. A., & Dorgham, M. M. (1994). Trace metals in macroalgae from the Qatari coastal water. Journal of King Abdulaziz University-Science, 5, 13–24.CrossRefGoogle Scholar
  36. El-Sherif, M. Z., & Mikhail, S. K. (2003). Phytoplankton dynamics in the southwestern part of Abu-Qir Bay Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 7(1), 219–239.Google Scholar
  37. El-Sikaily, A. (2008). Assessment of some heavy metals pollution in the sediments along the Egyptian Mediterranean coast. Egyptian Journal of Aquatic Research, 34(3), 58–71.Google Scholar
  38. El-Tawil, B. A. H., & Khalil, A. N. (1983). Chemical constituents of some algal species from Abu-Qir Bay. Egyptian Journal Facts Marine Science, 3, 85–94.Google Scholar
  39. Ergin, M., Saydam, C., Bastruk, O., Erdem, E., & Yoruk, R. (1991). Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and Izmit Bay) of the northeastern Sea of Marmara. Journal of Chemical Geology, 91, 269–285.CrossRefGoogle Scholar
  40. Evans, L. K., & Edwards, M. S. (2011). Bioaccumulation of copper and zinc by the giant kelp Macrocystis pyrifera. Algae, 26(3), 265–275.CrossRefGoogle Scholar
  41. Fityanos, K., Evgenidou, E., & Zachariadis, G. (1999). Use of macroalgae as biological indicators of heavy metal pollution in Thermaikos Gulf, Greece. Bulletin of Environmental Contamination and Toxicology, 62, 630–7.Google Scholar
  42. Gunner, H. V.; Aysel, O.; Ozeisel, S. & Sukatar, A. (1987). Periodical variation of trace element accumulations in some algae found in the bay of Izmir. Review of International Oceanography of Mediterranean Tomes. LXXXV-LXXXVI: 52-55.Google Scholar
  43. Güven, K.; Topcuoglu, S.; N. Balkis, N.; Ergul H. & Aksu, A. (2007). Heavy metals concentrations in marine algae from the Turkish coast of the Black Sea. Rapp. Comm. int. Mer Medit., 38, p.66.Google Scholar
  44. Hamed, M. A. & El-Moselhy, Kh., M. (2000). Levels of some metals in the coastal water and sediments of the Red Sea, Egypt, A.M.S.E. vol.61 (1, 2):43-57.Google Scholar
  45. Hardisson, A., Frı’as, I., Lozano, G., & Ba’ez, A. (1998). Mercury in algae of the Canary Islands littoral. Environment International, 24(8).Google Scholar
  46. Haritonidis, S., & Malea, P. (1995). Seasonal and local variation of Cr, Ni, and Co concentrations in Ulva rigida C.Agardh and Enteromorpha linza (Linnaeus) from Thermaikos Gulf, Greece. Journal of Environmental Pollution, 89(1), 319–327.CrossRefGoogle Scholar
  47. Higgins, H. W., & Mackey, D. J. (1978). Role of Ecklonia radiate (C. Ag.) J. Agardh in determining trace metal availability in coastal waters. I. Total trace metals. Australian Journal of Marine and Fresh water Research, 38, 307–315.CrossRefGoogle Scholar
  48. Holan, Z. R., & Volesky, B. (1994). Biosorption of lead and nickel by biomass of marine algae. Biotechnology and Bioengineering, 43, 1001–1009.CrossRefGoogle Scholar
  49. Jothinayagi, N., & Anbazhagan, C. (2009). Heavy metal monitoring of Rameswaram Coast by some Sargassum species. American - European Journal of Scientific Research, 4(2), 73–80.Google Scholar
  50. Khairy, H. M., & Omar, H. H. (2008). Effect of heavy metals on some metabolic activities of Jania rubens and Ulva lactuca from Eastern harbor and Abu-Qir bay of Alexandria Egypt. Egyptian Journal of Aquatic Research, 34(2), 114–129.Google Scholar
  51. Khalil, M. K., & Rifaat, A. E. (2010). Enrichment of zinc, copper, lead and nickel in bottom sediments from three environmentally different regions off Alexandria. Egypt. Egyptian Journal of Aquatic Research, 36(3), 379–394.Google Scholar
  52. Kimbrough, K. L.; Johnson, W. E.; Lauenstein, G. G.; Christensen, J. D. & Apeti, D. A. (2008). An assessment of two decades of contaminant monitoring in the Nation’s Coastal Zone. NOAA Technical Memorandum NOS NCCOS 74. National Oceanic and Atmospheric Centers for Coastal Ocean Science, Center for Coastal Monitoring and Assessment, Silver Spring, MD, 105 pp.Google Scholar
  53. Kontas, A. (2008). Trace metals (Cu, Mn, Ni, Zn, Fe) contamination in marine sediment and zooplankton samples from Izmior bay. (Aegean Sea, Turkey). J. Water Air and Soil Pollution, 188, 323–333.CrossRefGoogle Scholar
  54. Laib, E. & Leghouchi, E. (2011). Cd, Cr, Cu, Pb, and Zn concentrations in Ulva lactuca, Codium fragile, Jania rubens, and Dictyota dichotoma from Rabta Bay, Jijel (Algeria) Environmental Monitoring and Assessment. DOI  10.1007/s10661-011-2072-2080.
  55. Leal, M. C. F., Vasconcelos, M. T., Sousa-Pinto, I., & Cabral, J. P. S. (1997). Biomonitoring with benthic macroalgae and direct assay of heavy metals in seawater of the Oporto coast (Northwest Portugal). Marine Pollution Bulletin, 34(12), 1006–1015.CrossRefGoogle Scholar
  56. Long, E. R., MacDonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Journal of Environmental Management, 19, 81–97.Google Scholar
  57. Mohamed, L. A., & Khaled, A. (2005). Comparative study of heavy metal distribution in some coastal seaweeds of Alexandria, Egypt. Chemistry and Ecology, 21(3), 181–189.CrossRefGoogle Scholar
  58. Moore, J. W. (1991). Inorganic contaminants of surface water: Research and monitoring priorities, Springer-Verlag New York Inc.Google Scholar
  59. Munda, I. M. (1984). Salinity dependent accumulation of Zn, Co and Mn in Scytosiphon lomentaria (Lyngb.) Link and Enteromorpha intestinalis (L.) Link from the Adriatic Sea. Botanica Marina, 27, 371–376.CrossRefGoogle Scholar
  60. OECD, (2003). Environmental indicators, development, measurement and use, Reference Paper, OECD, Paris.Google Scholar
  61. Pawlik-Skowrońsk, B., Pirsze, J., & Brown, M. T. (2007). Concentrations of phytochelatins and glutathione found in natural assemblage of seaweeds depend on species and metal concentrations of the habitat. Aquatic Toxicology, 83(3), 190–199.CrossRefGoogle Scholar
  62. Philips, D. J. H. (1976). The common mussel Mytilus edulis as an indicator of pollution by zinc, cadmium, lead and copper. I. Effects of environmental variables on uptake of metals. Marine Biology, 38, 59–69.CrossRefGoogle Scholar
  63. Phillips, D. J. H. (1990). Use of macroalgae and invertebrates as monitors of metal levels in estuaries and coastal waters. In R. W. Furness & P. S. Rainbow (Eds.), Heavy metals in the marine environment (pp. 81–99). Boca Raton: CRC Press.Google Scholar
  64. Rainbow, P. S. (1995). Biomonitoring of heavy metal availability in the marine environment. Marine Pollution Bulletin, 31, 183–192.CrossRefGoogle Scholar
  65. Rajfur, M., Klos, A., & Waclawek, M. (2010). Sorption properties of algae Spirogyra sp. and their use for determination of heavy metal ions concentrations in surface water. Bioelectrochemistry, 80, 81–86.CrossRefGoogle Scholar
  66. Riedel, R. (1970). Fauna und Flora der Adria (p. 702). Hamburg und Berlin: Verlag Paul Parey.Google Scholar
  67. Riley, J. P. & Skirrow, G. (1965). Chemical Oceanography, Academic press, London, vol. 1, II, 411 pp.Google Scholar
  68. Romera, E., González, F., Ballester, A., Blázquez, M. L., & Munoz, J. A. (2007). Comparative study of biosorption of heavy metals using different types of algae. Bioresource Technology, 98, 3344–3353.CrossRefGoogle Scholar
  69. Santamaria-Fernandez, R., Cave, M. R., & Hill, S. J. (2005). Trace metal distribution in the Arosa estuary (N.W. Spain): the application of a recently developed sequential extraction procedure for metal partitioning. Analytical chemistry Acta, 557(1–2), 344–352.Google Scholar
  70. Sari, E., & Catagay, M. N. (2001). Distribution of heavy metals in the surface sediments of the Gulf of Saros, NE Agean Sea. Environment International, 26, 169–173.CrossRefGoogle Scholar
  71. Say, P. J., Burrows, I. G., & Whitton, B. A. (1990). Enteromorpha as a monitor of heavy metals in estuaries. Hydrobiologia, 195, 119–126.CrossRefGoogle Scholar
  72. Schuhmacher, M., & Domingo, J. L. (1996). Concentrations of selected elements in oyster Crassostra angulata from the Spanish coast. Bulletin of Environmental Contamination and Toxicology, 56, 106–113.CrossRefGoogle Scholar
  73. Shakweer, L., Shiridah, M., Fahmi, M., & Fattah, L. A. (2006). Distribution and concentrations of trace elements along the Mediterranean coastal water of Egypt. Egyptian Journal of Aquatic Research, 32(2), 95–127.Google Scholar
  74. Shams El-Din, N. G., & Dorgham, M. M. (2007). Phytoplankton community in Abu-Qir as a hot spot on the southeaster Mediterranean coast. Egyptian Journal of Aquatic Research, 33(1), 163–182.Google Scholar
  75. Shobier, A. H., Abdel Ghani, S. A., & Shreadah, M. A. (2011). Distribution of total mercury in sediments of four semi-enclosed basins along the Mediterranean coast of Alexandria. Egyptian Journal of Aquatic Research, 37(1), 1–11.Google Scholar
  76. Shriadah, M. A. & Emara, H. I. (1991). The distribution of chromium, copper, cadmium and lead in areas in multi-polluting factors of Alexandria. Proceeding of Symposium of Marine Chemistry in the Arab region, Suez, April, 39-50.Google Scholar
  77. Steffens, J. C. (1990). The heavy metal-binding peptides of plants. Annual of Review Plant Physiology and Plant Molecular Biology, 41, 553–575.CrossRefGoogle Scholar
  78. Stenner, R. D., & Nickless, G. (1975). Heavy metal in organisms of the Atlantic coast of SW. Spain and Portugal. Marine Pollution Bulletin, 6, 89–92.CrossRefGoogle Scholar
  79. Svete, P., Milacic, R., & Pihlar, B. (2001). Partitioning of Zn, Pb, and Cd in river sediments from a lead and zinc mining area using the BCR three-step sequential extraction procedure. Journal of Environmental Monitoring, 3, 586–590.CrossRefGoogle Scholar
  80. Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgol Meeresunters, 33, 566–575.CrossRefGoogle Scholar
  81. Topcuoǧlu, S., Güven, K. C., Balkıs, N., & Kirbașoǧlu, Ҫ. (2003). Heavy metal monitoring of marine algae from the Turkish Coast of the Black Sea, 1998–2000. Chemosphere, 52, 1683–1688.CrossRefGoogle Scholar
  82. Torres, M. A., Barros, M. P., Campos, S. C. G., Pinto, E., Rajamani, S., Sayre, R. T., & Colepicolo, P. (2008). Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicology and Environmental Safety, 71, 1–15.CrossRefGoogle Scholar
  83. Tropin, I. V. (1995). Distribution of metals in thalluses of red alga with special reference to their taxonomy and ecology. Oceanology, 35(1), 92–98.Google Scholar
  84. Usero, J., Morillo, J., & Gracia, I. (2005). Heavy metal contamination in mollusks from the Atlantic coast of southern Spain. Chemosphere, 59, 1175–1181.CrossRefGoogle Scholar
  85. Vald’es, J., Vargas, G., Sifeddine, A., Ortlieb, L., & Guinez, M. (2005). Distribution and enrichment evaluation of heavy metals in Mejillones Bay (23-S), Northern Chile: geochemical and statistical approach. Marine Pollution Bulletin, 50, 1558–1568.CrossRefGoogle Scholar
  86. Volterra, L., & Conti, M. E. (2000). Algae as biomarkers, bioaccumulators and toxin producers. International Journal of Environment and Pollution, 13, 92–125.CrossRefGoogle Scholar
  87. Waldichut, M. (1974). Some biological concern in heavy metals pollution. In F. J. Vernberg & W. B. Vernerberg (Eds.), Pollution and Physiology of marine organisms (pp. 1–54). New York: Academic Press.CrossRefGoogle Scholar
  88. Warnau, M., & Bustamante, P. (2007). Editorial: Radiotracer techniques: a unique tool in marine ecotoxicological studies. Environmental Bioindicators, 2(4), 217–218.CrossRefGoogle Scholar
  89. WQC, (1972). A report of the committee on water quality criteria. NAS. Washington. DC. 593pp.Google Scholar
  90. Zauke, G. P., Ritterhoff, J. & Rinderhagen, M. (1998). Concepts and applications in aquatic biomonitoring – internal review paper. Aquatic Ecology Group, ICBM, CvO Universitat, Oldenburg, Germany, pp. 38.Google Scholar
  91. Żbikowski, R., Szefer, P., & Latała, A. (2007). Comparison of green algae Cladophora sp. and Enteromorpha sp. As potential biomonitors of chemical elements in the southern Baltic. Science of the Total Environment, 387, 320–332.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • N. G. Shams El-Din
    • 1
  • L. I. Mohamedein
    • 1
  • Kh. M. El-Moselhy
    • 1
  1. 1.National Institute of Oceanography and Fisheries (NIOF)CairoEgypt

Personalised recommendations