Skip to main content

Advertisement

Log in

Synthesis, characterization, and systematic studies of a novel aluminum selective chelating resin

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A procedure is detailed for the selective analysis of trace aluminum by flame atomic absorption spectrophotometer coupled with off-line column separation and preconcentration. Chelating resin was synthesized by covalent functionalization of Amberlite XAD-16 by 2-(2-hydroxyphenyl) benzoxazole. The modified resin was characterized using FT-IR spectroscopy, energy dispersive x-ray analysis, elemental analysis, thermogravimetric analysis/differential thermal analysis, and minimum energy run. The optimum sorption was at pH 9 ± 0.1 with corresponding t 1/2 of only 7 min. Many competitive anions and cations studied did not interfere at all in the selective determination of Al(III), at the optimized conditions. The resin shows maximum sorption capacity of 21.58 mg g−1 and can be regenerated up to 75 cycles without any discernible capacity loss. The Langmuir isotherm model provides the better correlation of the experimental data (r 2 = 0.999) in comparison to Freundlich isotherm model, while the Scatchard analysis revealed homogeneous binding sites in the chelating resin. Analytical figures of merit were evaluated by accuracy (standard reference materials and recovery experiment), precision (RSD <5 %), and detection limit (2.8 μg L−1). The applicability was demonstrated by analysis of trace aluminum in biological, environmental, and food samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abdelwahab, O. (2007). Kinetic and isotherm studies of copper(II) removal from wastewater using various adsorbents. Egyptian Journal of Aquatic Research, 33, 125–143.

    CAS  Google Scholar 

  • Bergmann, A., & Hardt, K. (1979). Analysis of dissolved Cr3+ and Cr6+ in water by APDC-MIBK extraction and atomic absorption spectrometry. Fresenius' Zeitschrift für Analytische Chemie, 297, 381–383.

    Article  CAS  Google Scholar 

  • Boudenne, J., Boussetta, S., Brach-Papa, C., Branger, C., Margaillan, A., & Theraulaz, F. (2002). Modification of poly(styrene-divinylbenzene) resin by grafting on an aluminium selective ligand. Polymer International, 51, 1050–1057.

    Article  CAS  Google Scholar 

  • Carasek, E. (2000). A low-cost flame atomic absorption spectrometry method for determination of trace metals in aqueous samples. Talanta, 51, 173–178.

    Article  CAS  Google Scholar 

  • Chen, J., Huang, C., Hu, B., & Jiang, Z. (2004). Speciation of aluminum in drink samples by 8-hydroxyquinoline loaded silylanization silica gel microcolumn separation with off-line ICP-MS detection. Journal of Agricultural and Food Chemistry, 52, 6843–6847.

    Article  CAS  Google Scholar 

  • Dutta, S., & Das, A. K. (2008). Separation of selected 4f and 5f metals by solid phase extraction: a review. Journal of the Indian Chemical Society, 85, 9–21.

    CAS  Google Scholar 

  • Ejaz, M., Zuha, S., Dil, W., Akhtar, A., & Chaudhri, S. A. (1981). Extraction and preconcentration of copper from water, soils, lubricating oils and plant materials and its subsequent determination by atomic absorption spectrophotometry. Talanta, 28, 441–446.

    Article  CAS  Google Scholar 

  • Exley, C., Merce, A. L. R., Felcman, J., & Recio, M. A. L. (2009). Molecular and supramolecular bioinorganic chemistry. Applications in medical sciences (p. 45). New York: Nova Science Publishers Inc.

    Google Scholar 

  • Erdemoglu, S. B., Pyrzyniska, K., & Gucer, S. (2000). Speciation of aluminum in tea infusion by ion-exchange resins and flame AAS detection. Analytica Chimica Acta, 411, 81–89.

    Article  CAS  Google Scholar 

  • Gezici, O., Kara, H., Yanik, S., Ayyildiz, H. F., & Kucukkolbasi, S. (2007). Investigating sorption characteristics of copper ions onto insolubilized humic acid by using a continuously monitored solid phase extraction technique. Colloids Surfaces A, 298, 129–138.

    Article  CAS  Google Scholar 

  • Horng, C. J., & Lin, S. R. (1997). Determination of urinary trace elements (As, Hg, Zn, Pb, Se) in patients with Blackfoot disease. Talanta, 45, 75–83.

    Article  CAS  Google Scholar 

  • Hoveyda, H. R., Rettig, S. J., & Orvig, C. (1993). Coordination chemistry of 2-(2-hydroxyphenyl)-2-benzoxazole with gallium(III) and aluminum(III): two uncommon group 13 metal environments stabilized by a biologically relevant binding group. Inorganic Chemistry, 32, 4909–4913.

    Article  CAS  Google Scholar 

  • Henary, M. M., & Fahrni, C. J. (2002). Excited state intramolecular proton transfer and metal ion complexation of 2-(2-hydroxyphenyl) benzazoles in aqueous solution. Journal of Physical Chemistry A, 106, 5210–5220.

    Article  CAS  Google Scholar 

  • Islam, A., Ahmad, A., & Laskar, M. A. (2011a). A newly developed salicylanilide functionalized amberlite XAD-16 chelating resin for use in preconcentration and determination of trace metal ions from environmental and biological samples. Analytical Methods, 3, 2041–2048.

    Article  CAS  Google Scholar 

  • Islam, A., Ahmad, A., & Laskar, M. A. (2012a). Preparation, characterization of a novel chelating resin functionalized with o-hydroxybenzamide and its application for preconcentration of trace metal ions. Clean - Soil, Air, Water, 40, 54–65.

    Article  CAS  Google Scholar 

  • Islam, A., Ahmad, A., & Laskar, M. A. (2012b). Characterization of a chelating resin functionalized via azo spacer and its analytical applicability for the determination of trace metal ions in real matrices. Journal of Applied Polymer Science, 123, 3448–3458.

    Article  CAS  Google Scholar 

  • Islam, A., Laskar, M. A., & Ahmad, A. (2011b). The efficiency of amberlite XAD-4 resin loaded with 1-(2-pyridylazo)-2-naphthol in preconcentration and separation of some toxic metal ions by flame atomic absorption spectrometry. Environmental Monitoring and Assessment, 175, 201–212.

    Article  CAS  Google Scholar 

  • Islam, A., Laskar, M. A., & Ahmad, A. (2013a). Preconcentration of metal ions through chelation on a synthesized resin containing O, O donor atoms for quantitative analysis of environmental and biological samples. Environmental Monitoring and Assessment, 185, 2691–2704.

    Article  CAS  Google Scholar 

  • Islam, A., Laskar, M. A., & Ahmad, A. (2010a). Characterization and application of 1-(2-pyridylazo)-2-naphthol functionalized amberlite XAD-4 for preconcentration of trace metal ions in real matrices. Journal of Chemical and Engineering Data, 55, 5553–5561.

    Article  CAS  Google Scholar 

  • Islam, A., Laskar, M. A., & Ahmad, A. (2010b). Characterization of a novel chelating resin of enhanced hydrophilicity and its analytical utility for preconcentration of trace metal ions. Talanta, 81, 1772–1780.

    Article  CAS  Google Scholar 

  • Islam, A., Ahmad, H., Zaidi, N., & Yadav, S. (2013b). Selective separation of aluminum from biological and environmental samples using glyoxal-bis(2-hydroxyanil) functionalized amberlite XAD-16 resin: kinetics and equilibrium studies. Industrial and Engineering Chemistry Research, 52, 5213–5220.

    Article  CAS  Google Scholar 

  • Langmuir, I. (1918). The sorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Long, G. L., & Winefordner, J. D. (1983). Limit of detection: a closer look at the IUPAC definition. Analytical Chemistry, 55, 712A–724A.

    Article  CAS  Google Scholar 

  • Luo, M., & Bi, S. (2003). Solid phase extraction-spectrophotometric determination of dissolved aluminum in soil extracts and ground waters. Journal of Inorganic Biochemistry, 97, 173–178.

    Article  CAS  Google Scholar 

  • Matus, P., & Kubova, J. (2006). Complexation efficiency of differently fixed 8-hydroxyquinoline and salicylic acid ligand groups for labile aluminium species determination in soils-comparison of two methods. Analytica Chimica Acta, 573–574, 474–481.

    Article  Google Scholar 

  • Mizuike, A. (1983). Enrichment techniques for inorganic trace analysis. Berlin: Springer.

    Book  Google Scholar 

  • Martin-Esteban, A., Fernandez, P., Perez-Conde, C., Gutierrez, A., & Camara, C. (1995). On-line preconcentration of aluminium with immobilized Chromotrope 2B for the determination by flame atomic absorption spectrometry and inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 304, 121–126.

    Article  CAS  Google Scholar 

  • Mohammad, B., Ure, A. M., & Littlejohn, D. (1992). On-line preconcentration of aluminium with immobilized 8-hydroxyquinoline for determination by atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 7, 695–699.

    Article  CAS  Google Scholar 

  • Neal, C., Rowland, P., Neal, M., Jarvie, H. P., Lawlor, A., Sleep, D., & Scholefield, P. (2011). Aluminium in UK rivers: a need for integrated research related to kinetic factors, colloidal transport, carbon and habitat. Journal of Environmental Monitoring, 13, 2153–2162.

    Article  CAS  Google Scholar 

  • Ottaway, J. M., & Pradhan, N. K. (1973). Determination of chromium in steel by atomic absorption spectrometry with an air acetylene flame. Talanta, 20, 927–931.

    Article  CAS  Google Scholar 

  • Paleologos, E. K., Giokas, D. L., & Karayannis, M. I. (2005). Micelle-mediated separation and cloud-point extraction. Trends in Analytical Chemistry, 24, 426–436.

    Article  CAS  Google Scholar 

  • Popova, S. A., Bratinova, S. P., & Ivanova, C. R. (1991). Determination of trace amounts of copper, nickel and zinc in palladium compounds by solvent extraction flame atomic absorption spectrometry. Analyst, 116, 525–531.

    Article  CAS  Google Scholar 

  • Pearson, R. G. (1968). Hard and soft acids and bases, HSAB, Part II. Journal of Chemical Education, 45, 643–648.

    Article  CAS  Google Scholar 

  • Pearson, R. G. (1963). Hard and soft acids and bases. Journal of the American Chemical Society, 84, 3533–3539.

    Article  Google Scholar 

  • Pyrzynska, K., & Trojanowicz, M. (1999). Functionalized cellulose sorbents for preconcentration of trace metals in environmental analysis. Critical Reviews in Analytical Chemistry, 29, 313–321.

    Article  CAS  Google Scholar 

  • Pesavento, M., Biesuz, R., Alberti, G., & Sturini, M. (2003). Separation of copper(II) and aluminium(III) from fresh waters by solid phase extraction on a complexing resin column. Journal of Separation Science, 26, 381–386.

    Article  CAS  Google Scholar 

  • Qin, W., Obare, S. O., Murphy, C. J., & Angel, S. M. (2001). Specific fluorescence determination of lithium ion based on 2-(2-hydroxyphenyl)benzoxazole. Analyst, 126, 1499–1501.

    Article  CAS  Google Scholar 

  • Resing, J. A., & Measures, C. I. (1994). Fluorometric determination of Al in seawater by flow injection analysis with in-line preconcentration. Analytical Chemistry, 66, 4105–4111.

    Article  CAS  Google Scholar 

  • Silva, E. L., Grauzarolli, E. M., & Carasek, E. (2004). Use of Nb2O5-SiO2 in an automated on-line preconcentration system for determination of copper and cadmium by FAAS. Talanta, 62, 727–733.

    Article  Google Scholar 

  • Saxena, R., & Singh, A. K. (1997). Pyrocatechol violet immobilized Amberlite XAD-2: synthesis and metal-ion uptake properties suitable for analytical applications. Analytica Chimica Acta, 340, 285–290.

    Article  CAS  Google Scholar 

  • Sombra, L. L., Wuilloud, R. G., Olsina, R. A., Fernandez, L. P., & Martinez, L. D. (2000). On-line preconcentration system for aluminum determination in parenteral solutions using flow injection-inductively coupled plasma atomic emission spectrometry. Journal of Trace and Microprobe Techniques, 18, 431–436.

    CAS  Google Scholar 

  • Tian, Y., Chen, C. Y., Yang, C. C., Young, A. C., Jang, S. H., Chen, W. C., & Jen, A. K. Y. (2008). 2-(2′-Hydroxyphenyl)benzoxazole-containing two-photon-absorbing chromophores as sensors for zinc and hydroxide ions. Chemistry of Materials, 20, 1977–1987.

    Article  CAS  Google Scholar 

  • Welcher, F. J. (1958). The analytical uses of ethylenediaminetetraacetic acid. New York: Van Nostrand Company.

    Google Scholar 

  • Yuan, D., & Shuttler, I. L. (1995). Flow-injection column preconcentration directly coupled with electrothermal atomization atomic absorption spectrometry for the determination of aluminium. Comparison of column packing materials. Analytica Chimica Acta, 316, 313–322.

    Article  CAS  Google Scholar 

  • Yaman, M. (2001). Simultaneous enrichment of Cd, Pb, Ni and Al and their determination in water by STAT-FAAS. Spectroscopy Letters, 34, 763–768.

    Article  CAS  Google Scholar 

  • Zhang, X. B., Peng, J., He, C. L., Shen, G. L., & Yu, R. Q. (2006). A highly selective fluorescent sensor for Cu2+ based on 2-(2-hydroxyphenyl)benzoxazole in a poly(vinyl chloride) matrix. Analytica Chimica Acta, 567, 189–195.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aminul Islam.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, A., Zaidi, N., Ahmad, H. et al. Synthesis, characterization, and systematic studies of a novel aluminum selective chelating resin. Environ Monit Assess 186, 5843–5853 (2014). https://doi.org/10.1007/s10661-014-3823-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3823-5

Keywords