Environmental Monitoring and Assessment

, Volume 186, Issue 8, pp 5247–5259 | Cite as

Assessing metal pollution in ponds constructed for controlling runoff from reclaimed coal mines

  • Leticia Miguel-Chinchilla
  • Eduardo González
  • Francisco A. Comín
Article

Abstract

Constructing ponds to protect downstream ecosystems is a common practice in opencast coal mine reclamation. As these ponds remain integrated in the landscape, it is important to evaluate the extent of the effect of mine pollution on these ecosystems. However, this point has not been sufficiently addressed in the literature. The main objective of this work was to explore the metal pollution in man-made ponds constructed for runoff control in reclaimed opencast coal mines over time. To do so, we evaluated the concentration of ten heavy metals in the water, sediment, and Typha sp. in 16 runoff ponds ranging from 1 to 19 years old that were constructed in reclaimed opencast coal mines of northeastern Spain. To evaluate degree of mining pollution, we compared these data to those from a pit lake created in a local unreclaimed mine and to local streams as an unpolluted reference, as well as comparing toxicity levels in aquatic organisms. The runoff ponds showed toxic concentrations of Al, Cu, and Ni in the water and As and Ni in the sediment, which were maintained over time. Metal concentrations in runoff ponds were higher than in local streams, and macrophytes showed high metal concentrations. Nevertheless, metal concentrations in water and sediment in runoff ponds were lower than those in the pit lake. This study highlights the importance of mining reclamation to preserve the health of aquatic ecosystems and suggests the existence of chronic metal toxicity in the ponds, potentially jeopardizing pond ecological functions and services.

Keywords

Runoff control Man-made ponds Heavy metals Reclamation Restoration Coal mining Post-mining landscapes 

References

  1. APHA, AWWA, WPCF (1992) Métodos normalizados para el análisis de aguas potables y residuales. Ediciones Díaz de Santos.Google Scholar
  2. Babcock, M. F., Evans, D. W., & Alberts, J. J. (1983). Comparative uptake and translocation of trace elements from coal ash by typha latifolia. The Science of the Total Environment, 28, 203–214.CrossRefGoogle Scholar
  3. Bernhardt, E. S., & Palmer, M. A. (2011). The environmental costs of mountaintop mining valley fill operations for aquatic ecosystems of the Central Appalachians. Annals of the New York Academy of Sciences, 1223, 39–57. doi:10.1111/j.1749-6632.2011.05986.x.CrossRefGoogle Scholar
  4. Blodau, C. (2006). A review of acidity generation and consumption in acidic coal mine lakes and their watersheds. The Science of the Total Environment, 369, 307–332. doi:10.1016/j.scitotenv.2006.05.004.CrossRefGoogle Scholar
  5. Braune, B., Muir, D., DeMarch, B., et al. (1999). Spatial and temporal trends of contaminants in Canadian Arctic freshwater and terrestrial ecosystems: a review. The Science of the Total Environment, 230, 145–207. doi:10.1016/S0048-9697(99)00038-8.CrossRefGoogle Scholar
  6. Brix, H., Dyhr-Jensen, K., & Lorenzen, B. (2002). Root-zone acidity and nitrogen source affects Typha latifolia L. growth and uptake kinetics of ammonium and nitrate. Journal of Experimental Botany, 53, 2441–2450. doi:10.1093/jxb/erf106.CrossRefGoogle Scholar
  7. Bungart, R., & Hüttl, R. (2001). Production of biomass for energy in post-mining landscapes and nutrient dynamics. Biomass and Bioenergy, 20, 181–187. doi:10.1016/S0961-9534(00)00078-7.CrossRefGoogle Scholar
  8. Casas, J. M., Rosas, H., Sole, M., & Lao, C. (2003). Heavy metals and metalloids in sediments from the Llobregat basin, Spain. Environmental Geology, 44, 325–332.CrossRefGoogle Scholar
  9. Clements, W. H. (1994). Benthic invertebrate community responses to heavy metals in the Upper Arkansas River Basin, Colorado. J North Am Benthol Soc, 13, 30–44. doi:10.2307/1467263.CrossRefGoogle Scholar
  10. Clements, W. H., Vieira, N. K. M., & Church, S. E. (2010). Quantifying restoration success and recovery in a metal-polluted stream: a 17-year assessment of physicochemical and biological responses. Journal of Applied Ecology, 47, 899–910. doi:10.1111/j.1365-2664.2010.01838.x.CrossRefGoogle Scholar
  11. Cravotta, C. (2008). Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: Constituent quantities and correlations. Applied Geochemistry, 23, 166–202. doi:10.1016/j.apgeochem.2007.10.011.CrossRefGoogle Scholar
  12. Croteau, M. N., Luoma, S. N., & Stewart, A. R. (2005). Trophic transfer of metals along freshwater food webs: evidence of cadmium biomagnification in nature. Limnology and Oceanography, 50, 1511–1519. doi:10.2307/3597695.CrossRefGoogle Scholar
  13. David, C. P. C. (2003). Establishing the impact of acid mine drainage through metal bioaccumulation and taxa richness of benthic insects in a tropical Asian stream (the Philippines). Environmental Toxicology and Chemistry, 22, 2952–2959. doi:10.1897/02-529.CrossRefGoogle Scholar
  14. Davidson, C. M., Thomas, R. P., McVey, S. E., et al. (1994). Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments. Analytica Chimica Acta, 291, 277–286.CrossRefGoogle Scholar
  15. Demirezen, D., & Aksoy, A. (2004). Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere, 56, 685–696. doi:10.1016/j.chemosphere.2004.04.011.CrossRefGoogle Scholar
  16. Dorgelo, J., Meester, H., & van Velzen, C. (1995). Effects of diet and heavy metals on growth rate and fertility in the deposit-feeding snail Potamopyrgus jenkinsi (Smith) (Gastropoda: Hydrobiidae). Hydrobiologia, 316, 199–210. doi:10.1007/BF00017437.CrossRefGoogle Scholar
  17. Dubé, M. G., MacLatchy, D. L., Kieffer, J. D., et al. (2005). Effects of metal mining effluent on Atlantic salmon (Salmo salar) and slimy sculpin (Cottus cognatus): using artificial streams to assess existing effects and predict future consequences. The Science of the Total Environment, 343, 135–154. doi:10.1016/j.scitotenv.2004.09.037.CrossRefGoogle Scholar
  18. Dunbabin, J. S., & Bowmer, K. H. (1992). Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. The Science of the Total Environment, 111, 151–168. doi:10.1016/0048-9697(92)90353-T.CrossRefGoogle Scholar
  19. Förstner, U., & Wittmann, G. T. W. (1983). Metal pollution in the aquatic environment. Netherlands: Springer.Google Scholar
  20. Gambrell, R. (1994). Trace and toxic metals in wetlands—a review. Journal of Environmental Quality, 23, 883–891.CrossRefGoogle Scholar
  21. Gould, S. F. (2012). Comparison of post-mining rehabilitation with reference ecosystems in monsoonal eucalypt woodlands, northern Australia. Restoration Ecology, 20, 250–259. doi:10.1111/j.1526-100X.2010.00757.x.CrossRefGoogle Scholar
  22. Griffith, M. B., Norton, S. B., Alexander, L. C., et al. (2012). The effects of mountaintop mines and valley fills on the physicochemical quality of stream ecosystems in the central Appalachians: a review. The Science of the Total Environment, 417–418, 1–12. doi:10.1016/j.scitotenv.2011.12.042.CrossRefGoogle Scholar
  23. Hart, T. M., & Davis, S. E. (2011). Wetland development in a previously mined landscape of East Texas, USA. Wetlands Ecology and Management, 19, 317–329. doi:10.1007/s11273-011-9218-2.CrossRefGoogle Scholar
  24. Hartman, K. J., Kaller, M. D., Howell, J. W., & Sweka, J. A. (2005). How much do valley fills influence headwater streams? Hydrobiologia, 532, 91–102. doi:10.1007/s10750-004-9019-1.CrossRefGoogle Scholar
  25. Hobbs, R. J., & Norton, D. A. (1996). Towards a conceptual framework for restoration ecology. Restoration Ecology, 4, 93–110. doi:10.1111/j.1526-100X.1996.tb00112.x.CrossRefGoogle Scholar
  26. Hollander, M., & Wolfe, D. A. (1973). Nonparametric statistical methods. New York: John Wiley & Sons.Google Scholar
  27. Hopkins, R. L., Altier, B. M., Haselman, D., et al. (2013). Exploring the legacy effects of surface coal mining on stream chemistry. Hydrobiologia, 713, 87–95. doi:10.1007/s10750-013-1494-9.CrossRefGoogle Scholar
  28. Johnson, D. B. (2003). Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water Air Soil Pollut Focus, 3, 47–66.CrossRefGoogle Scholar
  29. Lindberg, T. T., Bernhardt, E. S., Bier, R., et al. (2011). Cumulative impacts of mountaintop mining on an Appalachian watershed. Proceedings of the National Academy of Sciences, 108, 20929–20934. doi:10.1073/pnas.1112381108.CrossRefGoogle Scholar
  30. Loayza-Muro, R. A., Elías-Letts, R., Marticorena-Ruíz, J. K., et al. (2010). Metal-induced shifts in benthic macroinvertebrate community composition in Andean high altitude streams. Environmental Toxicology and Chemistry, 29, 2761–2768. doi:10.1002/etc.327.CrossRefGoogle Scholar
  31. MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31.CrossRefGoogle Scholar
  32. Majer, & Nichols. (1998). Long-term recolonization patterns of ants in Western Australian rehabilitated bauxite mines with reference to their use as indicators of restoration success. Journal of Applied Ecology, 35, 161–182. doi:10.1046/j.1365-2664.1998.00286.x.CrossRefGoogle Scholar
  33. Markert, B. (1992). Presence and significance of naturally-occurring chemical-elements of the periodic system in the plant organism and consequences for future investigations on inorganic environmental chemistry in ecosystems. Vegetatio, 103, 1–30.Google Scholar
  34. McNaughton, S. J., Folsom, T. C., Lee, T., et al. (1974). Heavy metal tolerance in Typha latifolia without the evolution of tolerant races. Ecology, 55, 1163–1165.CrossRefGoogle Scholar
  35. Meeravali, N. N., & Kumar, S. J. (2000). Comparison of open microwave digestion and digestion by conventional heating for the determination of Cd, Cr, Cu and Pb in algae using transverse heated electrothermal atomic absorption spectrometry. Fresenius' Journal of Analytical Chemistry, 366, 313–315. doi:10.1007/s002160050061.CrossRefGoogle Scholar
  36. Merricks, T. C., Cherry, D. S., Zipper, C. E., et al. (2007). Coal-mine hollow fill and settling pond influences on headwater streams in southern West Virginia, USA. Environmental Monitoring and Assessment, 129, 359–378.CrossRefGoogle Scholar
  37. Meyer, C. K., Baer, S. G., & Whiles, M. R. (2008). Ecosystem recovery across a chronosequence of restored wetlands in the Platte River Valley. Ecosystems, 11, 193–208. doi:10.1007/s10021-007-9115-y.CrossRefGoogle Scholar
  38. Miguel-Chinchilla L (2013) Physicochemical and macroinvertebrate community trends in manmade ponds constructed in reclaimed opencast coal mines. Universidad de Alcalá.Google Scholar
  39. Miguel-Chinchilla L, Boix D, Gascón S, Comín FA (2014) Macroinvertebrate biodiversity patterns during primary succession in manmade ponds in north-eastern Spain. J. Limnol. 73Google Scholar
  40. Mitsch, W. J., & Gosselink, J. G. (2000). Wetlands (3rd ed.). New York: Wiley.Google Scholar
  41. Mitsch, W. J., & Wise, K. M. (1998). Water quality, fate of metals, and predictive model validation of a constructed wetland treating acid mine drainage. Water Research, 32, 1888–1900. doi:10.1016/S0043-1354(97)00401-6.CrossRefGoogle Scholar
  42. Nadkarni, R. A. (1984). Applications of microwave oven sample dissolution in analysis. Analytical Chemistry, 56, 2233–2237. doi:10.1021/ac00276a056.CrossRefGoogle Scholar
  43. Nicolau, J. M. (2003). Trends in relief design and construction in opencast mining reclamation. Land Degradation and Development, 14, 215–226.CrossRefGoogle Scholar
  44. Palmer, M., Bernhardt, E., Schlesinger, W., et al. (2010). Mountaintop mining consequences. Science, 327, 148–149. doi:10.1126/science.1180543.CrossRefGoogle Scholar
  45. Parker, G. H. (2004). Tissue metal levels in Muskrat (Ondatra zibethica) collected near the Sudbury (Ontario) ore-smelters; prospects for biomonitoring marsh pollution. Environmental Pollution, 129, 23–30. doi:10.1016/j.envpol.2003.10.003.CrossRefGoogle Scholar
  46. Pinheiro J, Bates D, DebRoy S, et al. (2012) nlme: linear and nonlinear mixed effects models. R Package Version 31-111Google Scholar
  47. Pond, G. J., Passmore, M. E., Borsuk, F. A., et al. (2008). Downstream effects of mountaintop coal mining: comparing biological conditions using family- and genus-level macroinvertebrate bioassessment tools. J North Am Benthol Soc, 27, 717–737. doi:10.1899/08-015.1.CrossRefGoogle Scholar
  48. Pueyo, M., Rauret, G., Luck, D., et al. (2001). Certification of the extractable contents of Cd, Cr, Cu, Ni, Pb and Zn in a freshwater sediment following a collaboratively tested and optimised three-step sequential extraction procedure. Journal of Environmental Monitoring, 3, 243–250.CrossRefGoogle Scholar
  49. R Core Team. (2012). R: a language and environment for statistical computing. Vienna: R foundation for Statistical Computing. R Foundation for Statistical Computing.Google Scholar
  50. Rauret, G. (1998). Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta, 46, 449–455.CrossRefGoogle Scholar
  51. Rodrigue, J. A., Burger, J. A., & Oderwald, R. G. (2002). Forest productivity and commercial value of pre-law reclaimed mined land in the eastern United States. Northern Journal of Applied Forestry, 19, 106–114.Google Scholar
  52. Samecka-Cymerman, A., & Kempers, A. J. (2001). Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. The Science of the Total Environment, 281, 87–98.CrossRefGoogle Scholar
  53. Sasmaz, A., Obek, E., & Hasar, H. (2008). The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecological Engineering, 33, 278–284.CrossRefGoogle Scholar
  54. Sastre, J., Sahuquillo, A., Vidal, M., & Rauret, G. (2002). Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction. Analytica Chimica Acta, 462, 59–72. doi:10.1016/S0003-2670(02)00307-0.CrossRefGoogle Scholar
  55. Sawtsky L, McKenna G, Keys MJ, Long D (2000) Towards minimising the long-term liability of reclaimed mine sites. In: Haigh MJ (ed) Reclaimed Land Eros. Control Soils Ecol. Taylor & Francis, pp 21–36.Google Scholar
  56. Sheoran, A. S., & Sheoran, V. (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Minerals Engineering, 19, 105–116. doi:10.1016/j.mineng.2005.08.006.CrossRefGoogle Scholar
  57. Shrestha, R. K., & Lal, R. (2006). Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil. Environment International, 32, 781–796.CrossRefGoogle Scholar
  58. Smith, F. E., & Arsenault, E. A. (1996). Microwave-assisted sample preparation in analytical chemistry. Talanta, 43, 1207–1268. doi:10.1016/0039-9140(96)01882-6.CrossRefGoogle Scholar
  59. US EPA. (2002). National Recommended Water Quality Criteria: 2002. Office of Water, EPA-822-R-02-047. Washinton, DC: United States Environmental Protection Agency. Accessed 23 Jun 2013.Google Scholar
  60. Vickers, H., Gillespie, M., & Gravina, A. (2012). Assessing the development of rehabilitated grasslands on post-mined landforms in north west Queensland, Australia. Agriculture, Ecosystems and Environment, 163, 72–84. doi:10.1016/j.agee.2012.05.024.CrossRefGoogle Scholar
  61. Walker, L. R., Wardle, D. A., Bardgett, R. D., & Clarkson, B. D. (2010). The use of chronosequences in studies of ecological succession and soil development. Journal of Ecology, 98, 725–736. doi:10.1111/j.1365-2745.2010.01664.x.CrossRefGoogle Scholar
  62. Wei, X., Wei, H., & Viadero, R. C., Jr. (2011). Post-reclamation water quality trend in a Mid-Appalachian watershed of abandoned mine lands. The Science of the Total Environment, 409, 941–948. doi:10.1016/j.scitotenv.2010.11.030.CrossRefGoogle Scholar
  63. Weis, J. S., & Weis, P. (2004). Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International, 30, 685–700.CrossRefGoogle Scholar
  64. Witeska, M., Sarnowski, P., Ługowska, K., & Kowal, E. (2013). The effects of cadmium and copper on embryonic and larval development of ide Leuciscus idus L. Fish Physiol Biochem Adv Online Publ. doi:10.1007/s10695-013-9832-4.Google Scholar
  65. Wong, M. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50, 775–780. doi:10.1016/S0045-6535(02)00232-1.CrossRefGoogle Scholar
  66. Ye, Z. H., Lin, Z. Q., Whiting, S. N., et al. (2003). Possible use of constructed wetland to remove selenocyanate, arsenic, and boron from electric utility wastewater. Chemosphere, 52, 1571–1579. doi:10.1016/S0045-6535(03)00497-1.CrossRefGoogle Scholar
  67. Younger, P. L. (2001). Mine water pollution in Scotland: nature, extent and preventative strategies. The Science of the Total Environment, 265, 309–326. doi:10.1016/S0048-9697(00)00673-2.CrossRefGoogle Scholar
  68. Yucel, D. S., & Baba, A. (2012). Geochemical characterization of acid mine lakes in northwest Turkey and their effect on the environment. Archives of Environmental Contamination and Toxicology, 64, 357–376. doi:10.1007/s00244-012-9843-7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Leticia Miguel-Chinchilla
    • 1
  • Eduardo González
    • 2
    • 3
    • 4
  • Francisco A. Comín
    • 1
  1. 1.Pyrenean Institute of EcologySpanish National Research CouncilZaragozaSpain
  2. 2.Université de Toulouse, INP, UPSEcoLabToulouseFrance
  3. 3.CNRSEcoLabToulouseFrance
  4. 4.Department of Biological SciencesUniversity of DenverDenverUSA

Personalised recommendations