Skip to main content

Advertisement

Log in

Geochemistry of mine tailings and behavior of arsenic at Kombat, northeastern Namibia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The mine tailings at Kombat, in semiarid northeastern Namibia, were investigated by the combination of solid-phase analyses, mineralogical methods, leaching tests, and speciation modeling. Dissolution of the most abundant primary sulfides, chalcopyrite and galena, released copper and lead which were adsorbed onto ferric oxyhydroxides or precipitated in the form of malachite, Cu2CO3(OH)2, and cerussite, PbCO3, respectively. Arsenic released from arsenopyrite was incorporated into ferric oxyhydroxides. Based on sequential extraction and 57Fe Mössbauer spectroscopy, a large amount of ferric iron is present as low solubility hematite and goethite formed rapidly (<10 years) under warm semiarid climatic conditions, and arsenic in these phases is relatively tightly bound. It seems that Cu and especially Pb in carbonate minerals represent a more serious environmental risk. Immobilization of As in hematite has implications for other mining sites in regions with similar climatic conditions because this process results in long-term immobilization of As.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Blowes, D. W., Jambor, J. L., Hanton-Fong, C. J., Lortie, L., & Gould, W. D. (1998). Geochemical, mineralogical and microbiological characterization of a sulphide-bearing, carbonate-rich gold-mine tailings impoundment, Joutel, Québec. Applied Geochemistry, 13(6), 687–705.

    Article  CAS  Google Scholar 

  • Blowes, D. W., Ptacek, C. J., Jambor, J. L., & Weisener, C. G. (2003). The geochemistry of acid mine drainage. In B. S. Lollar (Ed.), Environmental geochemistry, treatise on geochemistry (Vol. 9, pp. 149–204). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Bothe, J. V., & Brown, P. W. (1999). The stabilities of calcium arsenates at 23 ± 1 °C. Journal of Hazardous Materials, 69, 197–207.

    Article  CAS  Google Scholar 

  • Catalano, J. G., Zhang, Z., Park, C., Fentner, P., & Bedzyk, M. J. (2007). Bridging arsenate surface complexes on the hematite (012) surface. Geochimica et Cosmochimica Acta, 71, 1883–1897.

    Article  CAS  Google Scholar 

  • Deane, J. G. (1995) The structural evolution of the Kombat deposits, Otavi Mountainland, Namibia, Communications of the Geological Survey of Namibia 10, 99–107.

  • Dixit, S., & Hering, J. G. (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environmental Science and Technology, 37(18), 4182–4189.

    Article  CAS  Google Scholar 

  • Dokoupilová P, Sracek O, Losos Z. (2009). Geochemical behaviour and mineralogical transformations during spontaneous combustion of a coal waste pile in Oslavany, Czech Republic. Mineral. Mag. 71: 443–460.

    Google Scholar 

  • Dold, B. (2010). Basic concepts in environmental geochemistry of sulfidic mine-waste management. In E. S. Kumar (Ed.), Waste management (pp. 173–198). Croatia: INTECH.

    Google Scholar 

  • Dold, B., & Fontboté, L. (2001). Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. Journal of Geochemical Exploration, 74, 3–55.

    Article  CAS  Google Scholar 

  • Ettler, V., Mihaljevič, M., Kříbek, B., Majer, V., & Sebek, O. (2011). Tracing the spatial distribution and mobility of metal/metalloid contaminants in the vicinity of the Nkana copper smelter, Copperbelt, Zambia. Geoderma, 164, 73–84.

    Article  CAS  Google Scholar 

  • Flakova, R., Zenisova, Z., Sracek, O., Krcmar, D., Ondrejkova, I., Chovan, M., et al. (2012). The behavior of arsenic and antimony at Pezinok mining site, southwestern part of the Slovak Republic. Environmental Earth Sciences, 66, 1043–1057.

    Article  CAS  Google Scholar 

  • Gieré, R., Sidenko, N. V., & Lazareva, E. V. (2003). The role of secondary minerals in controlling t he migration of arsenic and metals from high-sulphide wastes (Berikul gold mine, Siberia). Applied Geochemistry, 18, 1347–1359.

    Article  Google Scholar 

  • Giménez, J., Martínez, M., de Pablo, J., Rovira, M., & Duro, L. (2007). Arsenic sorption onto natural hematite, magnetite, and goethite. Journal of Hazardous Materials, 141, 575–580.

    Article  Google Scholar 

  • Hossner, L. R., & Doolittle, J. L. (2003). Iron sulfidic oxidation as influenced by calcium carbonate application. Journal of Environmental Quality, 32, 773–780.

    Article  CAS  Google Scholar 

  • International Organization for Standardization. (1995). ISO 11466. Soil quality: extraction of trace elements soluble in Aqua regia. ISO, Geneva, Switzerland.

  • Jambor, J. L. (2003). Mine-waste mineralogy and mineralogical perspectives on acid–base accounting. In Jambor, J. L., Blowes, D. W., Ritchie, A. I. M. (Eds.), Environmental Aspects of Mine Wastes. Short Course Series, vol. 31 (pp. 117–145). Mineralogical Association of Canada.

  • Jamieson, H. E. (2011). Geochemistry and mineralogy of solid mine waste: essential knowledge for predicting environmental impact. Elements, 7, 381–386.

    Article  CAS  Google Scholar 

  • Kamona, A. F., & Gűnzel, A. (2007). Stratigraphy and base metal mineralization in the Otavi Mountain Land, Northern Namibia-a review and regional interpretation. Gondwana Research, 11, 396–413.

    Article  CAS  Google Scholar 

  • Langmuir, D. (1997). Aqueous environmental geochemistry. Upper Saddle River: Prentice Hall. 600 p.

    Google Scholar 

  • Langmuir, D., Mahoney, J., & Rowson, J. (2006). Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4.2H2O) and their application to arsenic behavior in buried mine tailings. Geochimica et Cosmochimica Acta, 70, 2942–2956.

    Article  CAS  Google Scholar 

  • Manning, B. A., Fendorf, S. E., & Goldberg, S. (1998). Surface structures and stability of arsenic(III) on goethite: spectroscopic evidence for inner-sphere complexes. Environmental Science and Technology, 32, 2383–2388.

    Article  CAS  Google Scholar 

  • McGregor, R. G., & Blowes, D. W. (2002). The physical, chemical and mineralogical properties of three cemented layers within sulfide-bearing mine tailings. Journal of Geochemical Exploration, 76, 195–207.

    Article  CAS  Google Scholar 

  • Meunier, L., Walker, S. R., Wragg, J., Parsons, M. B., Koch, I., Jamieson, H. E., et al. (2010). Effects of soil composition on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia. Environmental Science and Technology, 44, 2667–2674.

    Article  CAS  Google Scholar 

  • Nicholson, R. V., Gillham, R. W., & Reardon, E. J. (1990). Pyrite oxidation in carbonate-buffered solution: 2. Rate control by oxide coatings. Geochimica et Cosmochimica Acta, 54, 395–402.

    Article  CAS  Google Scholar 

  • Nordstrom, D. K. (2011). Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Applied Geochemistry, 26(11), 1777–1791.

    Article  CAS  Google Scholar 

  • Nordstrom, D. K., & Alpers, C. N. (1999). Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountains superfund site, California. National Academy of Sciences, 96, 3455–3462.

    Article  CAS  Google Scholar 

  • Ondruš, P., & Skála, R. (1997). New quasi-empirical channel Search/Match algorithm for ICDD PDF2 Database: A tool for qualitative phase analysis integrated in the ZDS-system software package for X-ray powder diffraction analysis, Fifth European Powder Diffraction Conference EPDIC-5, Parma, 193 pp.

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). Guide to PHREEQC (Version 2)-A Computer Program for Speciation, Batch-reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, Water-Resources Investigations Report 99–4259, U.S. Geological Survey.

  • Prucek, R., Tuček, J., Kolařík, J., Filip, J., Marušák, Z., Sharma, V. K., et al. (2013). Ferrate(VI)-induced arsenite and arsenate removal by in-situ structural incorporation into magnetic iron(III) oxide nanoparticles. Environmental Science and Technology, 47, 3283–3292.

    CAS  Google Scholar 

  • Rauret G., Lopez-Sanchez J.F., Sahuquillo A., Rubio R., Davidson C., Ure A., Quevauviller P. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials, J. Environ. Monit. 1, 57–61.

    Google Scholar 

  • Ravenscroft, P., Brammer, H., & Richards, K. (2009). Arsenic pollution, global synthesis. Chichester: Wiley-Blackwell. 588 p.

    Book  Google Scholar 

  • Romero, F. M., Armienta, M. A., Villasenor, G., & Gonzáles, J. L. (2006). Mineralogical constraints on the mobility of arsenic in tailings from Zimapán, Hidalgo, Mexico. International Journal of Environment and Pollution, 26, 23–40.

    Article  CAS  Google Scholar 

  • Romero, F. M., Armienta, M. A., & Gonzales-Hernandez, G. (2007). Solid phase control on the potential mobility of potentially toxic elements in an abandoned lead/zinc mine tailings impoundment, Taxco, Mexico. Applied Geochemistry, 22(1), 109–127.

    Article  CAS  Google Scholar 

  • Salzsauler, K. A., Sidenko, N. V., & Sherriff, B. L. (2005). Arsenic mobility in alteration products of sulphide-rich, arsenopyrite-bearing mine wastes, Snow Lake, Manitoba, Canada. Applied Geochemistry, 20, 2303–2314.

    Article  CAS  Google Scholar 

  • Singh, D. B., Prasad, G., & Rupainwar, D. C. (1996). Adsorption technique for treatment of As(V)-rich effluents. Colloids and Surfaces A, 111, 49–56.

    Article  CAS  Google Scholar 

  • Sracek, O., Bhattacharya, P., Jacks, G., Gustafsson, J. P., & von Brömssen, M. (2004). Behavior of arsenic and geochemical modeling of arsenic enrichment in aqueous environments. Applied Geochemistry, 19(2), 169–180.

    Article  CAS  Google Scholar 

  • Sracek, O., Mihaljevič, M., Kříbek, B., Majer, V., & Veselovský, F. (2010a). Geochemistry and mineralogy of Cu and Co in mine tailings at the Copperbelt, Zambia. Journal of African Earth Sciences, 57, 14–30.

    Article  CAS  Google Scholar 

  • Sracek, O., Veselovský, F., Kříbek, B., Malec, J., & Jehlička, J. (2010b). Geochemistry, mineralogy and environmental impact of precipitated efflorescent salts at the Kabwe Cu- Co chemical leaching plant in Zambia. Applied Geochemistry, 25, 1815–1824.

    Article  CAS  Google Scholar 

  • Whiting, K. S. (1992). The thermodynamics and geochemistry of as with the application to subsurface waters at the Sharon steel superfund site midvale, Utah. MSc thesis, Colorado School of Mines.

  • Žák, T., & Jirásková, Y. (2006). CONFIT: Mössbauer spectra fitting program. Surface and Interface Analysis, 38, 710–714.

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by the Czech Science Foundation (GAČR P210/12/1413), and Ministry of Education, Youth and Sports of the Czech Republic (MSM0021620855). The authors also acknowledge the support by the Operational Program Research and Development for Innovations—European Development Fund (CZ.1.05/2.1.00/03.0058) of the Ministry of Education, Youth and Sports of the Czech Republic. This study was carried out within the framework of the IGCP Project No. 594 (“Assessment of impact of mining and mineral processing on the environment and human health in Africa”). We thank two anonymous reviewers, whose comments helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Sracek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sracek, O., Mihaljevič, M., Kříbek, B. et al. Geochemistry of mine tailings and behavior of arsenic at Kombat, northeastern Namibia. Environ Monit Assess 186, 4891–4903 (2014). https://doi.org/10.1007/s10661-014-3746-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3746-1

Keywords