Akaike, H. (1969). Fitting autoregressive models for prediction. Annals of the Institute of Statistical Mathematics, 21, 243–247.
Article
Google Scholar
Akaike, H. (1970). Statistical predictor identification. Annals of the Institute of Statistical Mathematics, 22, 203–217.
Article
Google Scholar
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle, in Perron, B. N. and Csaki, F. (eds), 2nd International Symposium in Information Theory, Budapest: Akademial Kiodo, 207 – 261.
Akaike, H. (1979). A Bayesian extension of the minimum AIC procedure of autoregressive model fitting. Biometrika, 66(2), 237–242.
Article
Google Scholar
Beveridge, S., & Oickle, C. (1994). Comparison of Box-Jenkins and objective methods for determining the order of a non-seasonal ARMA Model. Journal of Forecasting, 13, 419–434.
Article
Google Scholar
Brockwell, P. J., & Davis, R. A. (1996). Introduction to time series and forecasting. New York: Springer.
Book
Google Scholar
Chaudhuri, S., & Middey, A. (2013). Effect of meteorological parameters and environmental pollution on thunderstorm and lightning activity over an urban metropolis of India. Urban Climate, 3, 67–75.
Article
Google Scholar
DeCaria, A. J., Pickering, K. E., Stenchikov, G. L., & Ott, L. E. (2005). Lightning generated NOX and its impact on tropospheric ozone production: a three-dimensional modeling study of a stratosphere-troposphere experiment: radiation, aerosols and ozone (STERAO-A) thunderstorm. Journal of Geophysical Research, 110, D14303. doi:10.1029/2004JD005556.
Article
Google Scholar
De Gooijer, J. G., Abraham, B., Gould, A., & Robinson, L. (1985). Methods for determining the order of an autoregressive moving average process: a survey. International Statistical Review, 53, 301–329.
Article
Google Scholar
Domonkos, P., Kysel, J. Y., Piotrowicz, K., Petrovic, P., & Likso, T. (2003). Variability of extreme temperature events in south–central Europe during the 20th century and its relationship with large-scale circulation. International Journal of Climatology, 23, 978–1010.
Article
Google Scholar
Hannan, E. J. (1980). The estimation of the order of an ARMA process. Annals of Statistics, 8, 1071–1081.
Article
Google Scholar
Hargreaves, P. R., Leidi, A., Grubb, H. J., Howe, M. T., & Mugglestone, M. A. (2000). Local and seasonal variations in atmospheric nitrogen dioxide levels at Rothamsted, UK, and relationships with meteorological conditions. Atmospheric Environment, 34, 843–853.
CAS
Article
Google Scholar
Hirsch, R. M., Slack, J. R., & Smith, R. A. (1982). Techniques for trend assessment for monthly water quality data. Water Resources Research, 18, 107–121.
Article
Google Scholar
Hurvich, C. M., & Tsai, C. L. (1989). Regression and time series model selection in small samples. Biometrika, 76, 297–307.
Article
Google Scholar
Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. New York: Van Nostrand Reinhold Co.. 320 pp.
Google Scholar
Jones, R. H. (1975). Fitting autoregressions. Journal of American Statistics Association, 70, 90–592.
Google Scholar
Luo, Y., Liu, S., Fu, S. F., Liu, J., Wang, G., & Zhou, G. (2008). Trends of precipitation in Beijiang River Basin, Guangdong Province. China. Hydrological Processes, 22, 2377–2386.
Article
Google Scholar
Libiseller, C., Grimvall, A., Waldén, J., & Saari, H. (2005). Meteorological normalisation and non-parametric smoothing for quality assessment and trend analysis of tropospheric ozone data. Environmental Monitoring and Assessment, 100(1–3), 33–52.
CAS
Article
Google Scholar
Middey, A., & Chaudhuri, S. (2013). The reciprocal relation between lightning and pollution and their impact over Kolkata, India. Environmental Science and Pollution Research, 20(5), 3133–3139.
CAS
Article
Google Scholar
Montgomery, D. C., & Johnson, L. A. (1976). Forecasting and time series analysis. New York: McGraw-Hill.
Google Scholar
Reeves, C. E., Penkett, A., Bauguitte, S., Law, K. S., Evans, M. J., Bandy, B. J., Monks, P. S., Edwards, G. D., Phillips, G., Barjat, H., Kent, J., Dewey, K., Schmitgen, S., & Kley, D. (2002). Potential for photochemical ozone formation in the troposphere over the North Atlantic as derived from aircraft observations during ACSOE. Journal of Geophysical Research, 107(D23), 4707. doi:10.1029/2002JD002415.
Article
Google Scholar
Salmi, T., Maata, A., Antilla, P., Ruoho-Airola, T., & Amnell, T. (2002). Detecting trends of annual values of atmospheric pollutants by the Mann–Kendall test and Sen’s slope estimates—the Excel template application Makesens (p. 35). Helsinki, Finland: Finnish Meteorological Institute.
Google Scholar
Shahid, S. (2011). Trends in extreme rainfall events of Bangladesh. Theoretical and Applied Climatology, 104, 489–499.
Article
Google Scholar
Shrestha, A. B., Wake, C. P., Mayewski, P. A., & Dibb, J. E. (1999). Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971–94. Journal of Climate, 12, 2775–2786.
Article
Google Scholar
Shibata, R. (1976). Selection of the order of an autoregressive model by Akaike’s information criterion. Biometrika, 63(1), 117–126.
Article
Google Scholar
Söderström T. (1977) On model structure testing in system identification. International Journal of Control, 26, 1–18.
Google Scholar
Stedman, J. R., Goodwin, J. W. L., King, K., Murrells, T. P., & Bush, T. J. (2001). An empirical model for predicting urban roadside nitrogen dioxide concentrations in the UK. Atmospheric Environment, 35, 1451–1463.
CAS
Article
Google Scholar
Stoica, P., Eykhoff, P., Jansen, P., & Söderström, T. (1986). Model selection by cross-validation. International Journal of Control, 43, 1841–1878.
Article
Google Scholar
Yue, S., Pilon, P., Phinney, B., & Cavadias, G. (2002). The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes, 16, 1807–1829.
Article
Google Scholar